

Geometry-Based Optimization Heuristics for Region Coverage and Pathfinding in Drone-Based Operations

Kemal İhsan Kılıç

Supervisor: Assoc. Prof. Leonardo Mostarda

Computer Science Division, University of Camerino kemal.kemal@unicam.it

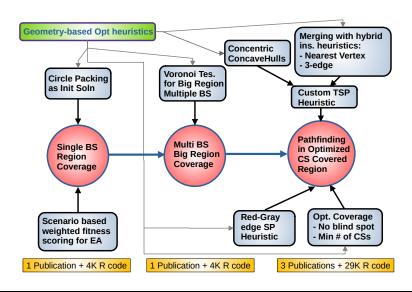
October 21, 2022

Outline:

- Thesis Research Summary
- Static Op. Things to Cover (e.g. Communication)
 - ► Milestone 1 (p. 6): Single BS Region Coverage case study. A special case of "SCP (Set Cover Problem)".
 - ► Milestone 2 (p. 13): Extended Region Coverage. Multi BS, bigger region, Voronoi Tessellation.
- Dynamic Op. Things to Visit (e.g. Transportation)
 - Milestone 3 (p. <u>17</u>): Boat Rescue case study.
 Coverage with CSs, TSP (Traveling Salesman Problem), and SP.
- Epilogue

Thesis in a few words:

Can the geometry of entities inspire novel heuristic methods for better optimization?


Proposal of a novel geometry-based approach for \mathcal{NP} -Hard optimization problems (case studies in drone operations):

The geometry of the entities, can be exploited and/or regulated for novel approximation heuristics towards faster and improved optimizations.

Research Method in a few words:

- Geometry-based heuristics are hypothesized.
- Novelty/contribution/impact are checked/evaluated with Lit.
 Survey/Research Questions.
- When possible, theoretical/probabilistic perf. analysis is carried out for the proposed heuristics.
- Heuristics are benchmarked against "Base Case" (no-heuristic). When possible, against standard algos.
- When possible, (known soln/for small N), AR (Approximation Ratio) is calculated for the proposed heuristics.

Research Summary: "Representation Matters!"

Significance and Impacts of the research:

Practically:

- Addressed limited on-board energy issues for EVs.
- Contributed with various novel geometry-based optimization heuristics to the effective operations (Static/Dynamic) with such vehicles.
- Will have practical impacts on Sustainability, Smart Cities, IoT, Industry 4.0, effective use of EVs.

Theoretically:

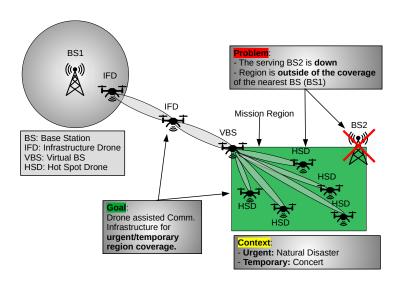
- Proposed geometry-based approximation heuristics for NP-Hard optimization problems.
- Proposed multi-party multi-objective optimization frameworks.
- Will have theoretical impacts on SCP, TSP, VRP, and Geometry-based optimizations.

(Vision & Goals: A1, A2 - Research Paradigm: A3)

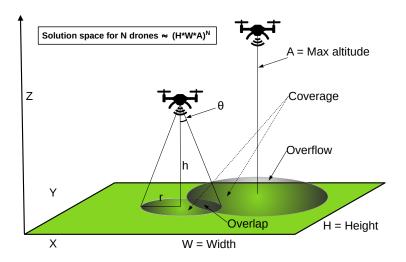
Drones (Flying IoT A<u>20</u>): Pros and Cons[†]

Pros	Cons
Straight flight over obstacles	Limited onboard energy
Precision (GPS)	Little wind can effect flight
Easy deployment	Uncertain regulations
Autonomous mission	Small size can be problem
Quality aerial imaging	Privacy problems
Small size can be useful	
Can carry diverse types of sensors	

https://onlinemasters.ohio.edu/blog/the-pros-and-cons-of-unmanned-aerial-vehicles-uavs/


[†]Partly from:

Milestone1


Static Drone Operation: Single BS Region Coverage

Region Coverage: Problem, Goal, and Context

Region Coverage: Drone Parameters

Research in short

Proposal of a multi-party multi-objective optimization framework for drone-based region coverage in which various EAs (Evolutionary Algos) are benchmarked.

Parties and objectives:

- The operation region: In need of temporary or urgent connectivity. Main obj.: Ideally 100% coverage is required.
- Operation drones: Available drones considered in the optimization. Main obj.: Energy optimization (distance).

Region Coverage: Research Gaps

Limitations of related work ([1, 14, 27, 4, 2]) and contributions:

- (in some) Single-party opt., mostly focused on QoS parameters:
 Multi-party multi-objective scheme.
- (in some) "Coverage Score" with conflicting objectives was not elaborated: Scenario (A4) based weighted scoring (normalized scores) of novel objectives (A3).
- (no) Load balancing with multiple BSs was not studied: Division of the region with Voronoi Tessellation.
- (no) Accelerating optimization in EAs was not considered: CP
 (A8) algo for initial solution to help EA for better opt.

(RQs: Appendix <u>1</u> and <u>2</u>) (Process Flow: Appendix <u>10</u>)

Region Coverage: Results Summary[†]

EA	Soln Type	Best for
DEoptim	Population	Run time
GA	Population	Sum of drone distances (energy)
GenSA	Single solution	Coverage

(Example coverage: Appendix 9)

[†]Complete benchmark results in A6 and A7

Region Coverage: Research Impacts

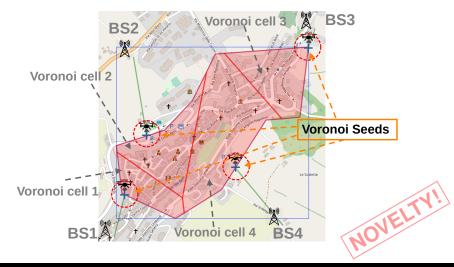
- Base Station deployment for cellular networks (GSM) and wireless networks (IEEE 802.11)
- Energy efficient monitoring in WSNs
- Scheduling
- Optimum industrial cutting
- VLSI testing
- Inspection, Precision Agriculture, Disaster Management
- Strategic deployment of delivery stations (transportation logistics).
- Theoretical study of the "SCP (geometric, score-based)".

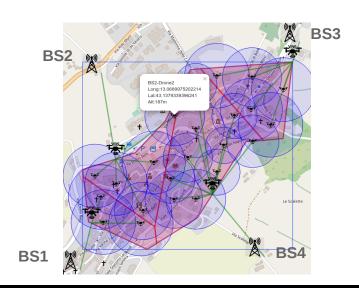
Region Coverage: Publication 1

Kilic K.I., Gemikonakli O., Mostarda L. (2020) **Multi-objective Priority Based Heuristic Optimization for Region Coverage with UAVs**. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham.

DOI: https://doi.org/10.1007/978-3-030-44041-1_68

Milestone2


Static Drone Operation: Multi BS Region Coverage


Extensions to Region Coverage

- Web deployable simulator GUI for selecting real world region and parameters (Screenshot: A2).
- Utilization of multiple BSs (Process Flow: A1).
- Voronoi Tessellation of the operation region for load balanced comm.
- Available drones divided into sub regions proportional to the area.

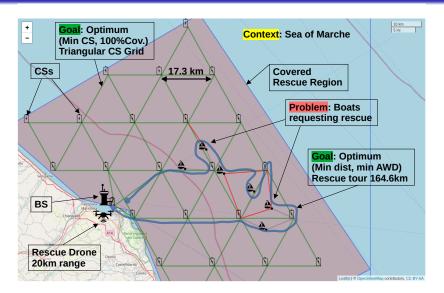
Example Voronoi Tessellation

Example Coverage

Region Coverage: Publication 2

Kilic, K. I., Gemikonakli, O. and Mostarda, L. (2021), **Voronoi Tesselation-based load-balanced multi-objective** priority-based heuristic optimisation for multi-cell region coverage with UAVs,

International Journal of Web and Grid Services 17(2), 152-178. DOI: https://doi.org/10.1504/IJWGS.2021.114574


- Contrib. to Coverage: Multi BS coverage framework for Voronoi Tessellated operation region, utilization of homogeneous/heterogeneous BSs.
- Contrib. to Voronoi Tess.: Application of the Voronoi Tessellation with homogeneous/heterogeneous site points (A3).

Milestone3

Dynamic Drone Operation:
CS Coverage and
Pathfinding
1 Drone / 1 BS / N Boats

Boat Rescue: Problem, Goal, and Context(A47)

Boat Rescue Parts:

- Foundational CS Grid covering the region (p. 23)
- Local Pathfinding Heuristic (boat to boat): redGraySP (p. 26)
- Global Pathfinding Heuristic (TSP tour of boats): concaveTSP (p. 29)

(Process Flow: Appendix <u>52</u>)

Research in short

- Proposal of a multi-party multi-objective optimization framework for drone-based operations in which the synergy between the CS Grid and the Pathfinding is established and exploited:
 - The CS Grid: Optimized for region coverage[†] through geometry-based heuristics for the operation region. Triangular and Square Grids are considered. [CS Techs: (A2, A3, A4, A5)]
 - The Pathfinding Algorithm: Optimized for energy[†] through geometry-based heuristics for the operation drones.
 - Local search (BT2BT), redGraySP: Augments SP/A* with dynamic constraint edges (Red-Gray).
 - Global search (All BT), concaveTSP: A novel TSP for multi boats.

[†]The main goal. List of objectives: A1

Boat Rescue: Research Gaps - CS Grid

Limitations of related work ([24, 17, 11, 12]) and contributions:

- Optimal CS deployment studied only in the context of adjustable (mobile) CS Grid: Proposal of static optimal (min CS no blind spot) CS grid geometries (p7) adjusted to drone range (A6) for complete region coverage and the coverage effectiveness metric (p10).
- Optimal CS deployment studied only for coverage,
 synergy with pathfinding not considered: Proposal of the novel TSP (A<u>17</u>) + redGraySP pathfinding heuristics (p<u>11</u>).

Boat Rescue: Research Gaps - Pathfinding

Limitations of related work ([24, 17, 11, 12]) and contributions:

In pathfinding (Fuel Constrained, UAV Routing Problem (FCURP)) studies, either the region is assumed to be covered or the CSs are assumed to be mobile: Proposal of the synergistic CS deployment and the pathfinding benefiting from the regular configuration of the CS grid.

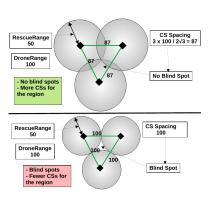
Boat Rescue: Research Gaps - TSP

Limitations of related work ([22, 7, 8, 15, 18, 16, 13]) and contributions:

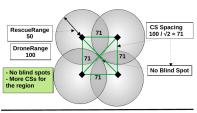
- For geometric instances of TSP,
 concave hull-based heuristics were not studied: Proposal a novel concave hull-based TSP heuristic (A32).
- In multi objective TSP only generic objectives are assumed: Proposal of novel metrics and multi-party/multi-objective optimization scheme.
- Mostly TSP datasets are biased: Proposal of analyzing various statistical/geometrical properties of the data sets other than their sizes for better benchmarking. Custom "Grid" dataset generation.

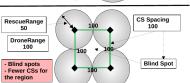
Foundation Optimum CS Deployment

Region coverage with:

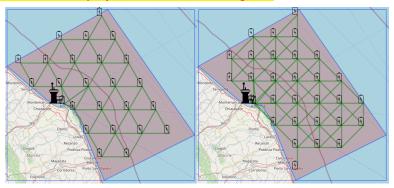

Minimum CSs

No blind-spots




CS Grid design without "blind-spots"

RQ: How to deploy min number of CSs without any "blind-spot"?



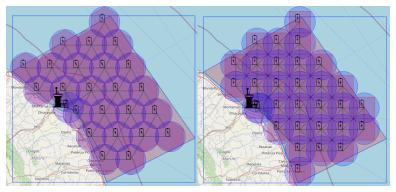
Square CS Grid

CS Grid design to cover the region I

RQ: How to deploy CSs to cover the region?

Actual **triangular grid CS deployment (24 CS)**.

AVG SP length from BS = 2.06 units (unit = Drone range).


Actual square grid CS deployment (30 CS).

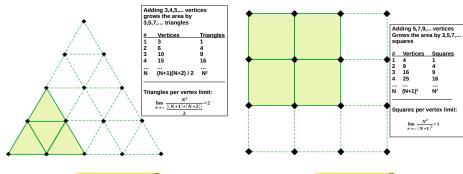
AVG SP length from BS = 2.07 units (unit = Drone range).

Actual CS grid deployments on the sea of Marche, Italy. The selected region is 5992 km^2 . The bounding box has width: 120.93 km and height: 109.38 km. Tri Grid wins!

CS Grid design to cover the region II

RQ: How to deploy CSs to cover the region?

Actual **triangular grid CS deployment (24 CS)**. AVG SP length from BS = 2.06 units (unit = Drone range).


Actual square grid CS deployment (30 CS).

AVG SP length from BS = 2.07 units (unit = Drone range).

Actual CS grid deployments on the sea of Marche, Italy. The selected region is 5992 km^2 . The bounding box has width: 120.93 km and height: 109.38 km. Tri Grid wins!

Novel metric: Coverage effectiveness

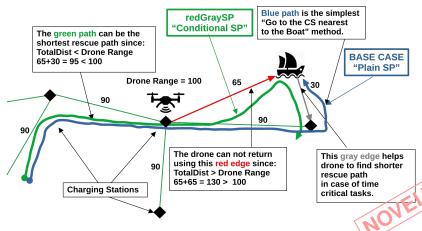
RQ: Which one has better "coverage" (more area for each CS)?

Tri: 1.30 *unit*²

Sq: $0.5 \, unit^2$

Coverage effectiveness: Covered unit (=Drone range) area per (3).

Tri Grid wins! (Consider limits as $N \to \infty$!)

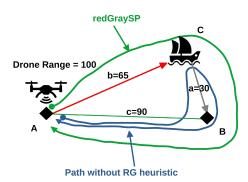

Local Pathfinding Heuristic redGraySP:

Boat to boat pathfinding (Augmented SP/A*)

Red-gray path heuristic: redGraySP

RQ: Can we exploit CS config. for better pathfinding? (Synergy \(\frac{1}{4} \))

Red and gray edges (A22) are dynamic constraint edges


(red+gray \leq droneRange). They disappear when the boat is rescued!

Geometric proof for redGraySP

RQ: Can we prove that redGraySP < SP?

Geometric proof for redGraySP is shorter SP


```
ABC is triangle, inequalities:
a < b + c
                         (1)
b < a + c
                         (2)
                         (3)
c < a + b
redGraySP path:
b + a + c
                         (4)
SP path (without RG heuristic):
2c + 2a
                          (5)
Compare:
(b+a+c)?(2c+2a)
                          (6)
(b + a + e)?(2c + 2a)
(b)?(c+a)
                          (7)
From (2):
(b)<(c+a)
                          (8)
```

Triangular vs Square CS Grid (Theoretical)

RQ: How redGraySP performs on different CS grid types?

Grid type	Prob. of having a Good RG Path	Prob. of using a Good RG Path	Savings 1-way	Savings Return	Operation Area per CS
Triangular	0.78	0.45	43%	20%	1.30 <i>unit</i> ^{2†}
Square	0.82	0.31	64%	50%	$0.5\;unit^2$

Analysis: p48, p49, p50, p51

Verdict (Theoretical): Tri gives better (less CSs and more area per CS) coverage.

RQ: In practice, how is Tri vs Sq Grid comparison? Multi BT Simulations!

^{†1} unit = Drone range

Global Pathfinding Heuristic concaveTSP:

Find optimum rescue order for **multiple boats**

Multiple boats: Design issues

RQ: In which order to rescue boats?

For a **single drone** the optimum order = Shortest rescue tour = TSP tour!

RQ: Can we design a fast algorithm that considers geometric configurations of boats and finds the optimum rescue order?

We need to try Geometric TSP!

Multiple boats: Method

In essence a TSP+SP algo (A23):

- TSP will give the "optimum" order to rescue boats.
 - Paths between boats are "dynamic" → Use Euclidean Dist. between boats for TSP.
 - Boats have same priorities.
 - ► Tour cost + **novel metrics**: AWD[†] and minAWD (A<u>26</u>, A<u>27</u>, and A<u>28</u>).
 - ➤ CW and Anti-CW tours (Same tour len. but diff. AWD).
 - ▶ Weights for objectives: Min tour, min AWD, num chargings.
- The red-gray heuristic(A29, A30) will find a SP between boats.

concaveTSP [Summary: A32 - Demo: A17 - Algo: A24]

[†]Average Waiting Distance

Multi Boat Sim Params.

Total 1600 sims:

- Goals: Benchmark proposed methods and compare Tri-Sq.
- Tri and Sq CS grids compared $\rightarrow \times 2$
- lacktriangle 20, 40, 60, 80, 100 randomly generated Boats $\rightarrow \times 5$
- ullet concaveTSP, Farthest Ins, Nearest Neighbor, 2-OPT benchmarked $\to \times 4$
- With red-gray heuristic and without (base case=Go to the CS nearest to the Boat!) $\to \times 2$
- AVG of 20 simulations for each measurement $\rightarrow \times 20$ Simulator GUI (A8) Examples (1BT: A9, A10, A11, A12, 6BT:A13, A14)

Tri vs Sq: Theo. + Sim Results Summary

Туре	Metric	Tri Grid	Sq Grid		
	Prob. of having a Good RG Path	0.78	0.82		
Tredelical	Prob. of using a Good RG Path	0.45	0.31		
Teore Boc	Savings 1-way	43%	64%		
J. Sing.	Savings return	20%	50%		
	Area per CS	1.30 $unit^{2\dagger}$	$0.5 \ unit^2$		
	Tour Cost	Higher	Lower		
	*Tour Cost Savings%	Higher	Lower		
Simulations	AWD	Higher	Lower		
Simula HiBO'd	*AWD Savings%	Higher	Lower		
S. Will	Chargings	Not much difference	Not much difference		
	*Chargings Savings%	Higher	Lower		
	*Number of CSs	Lower (24)	Higher (30)		

Verdict (Sim. results): The **redGraySP**, "saves path length" in the range of 10-17% over the "base case".

Tri gives better (over base case) savings and better coverage, but the "tour" is more expensive!

^{†1} unit = Drone range

Perf. of the methods: Sim Results Summary

Plots:

- AVG Runtimes (A31)
- AVG Tour Cost (A<u>32</u>)
- AVG AWD (A33)
- AVG Num. of Chargings (A<u>34</u>)

Tables (With OPT soln):

- 4 boats 20 sims (A40)
- 5 boats 20 sims (A41)
- 6 boats 20 sims (A42)
- 7 boats 20 sims (A43)

Tables (Comparison):

- 20 boats 20 sims (A<u>35</u>)
- 40 boats 20 sims (A<u>36</u>)
- 60 boats 20 sims (A<u>37</u>)
- 80 boats 20 sims (A<u>38</u>)
- 100 boats 20 sims (A<u>39</u>)
- Tour costs big dataset (A<u>44</u>)
- Runtime big dataset (A45)
- AWD costs big dataset (A<u>46</u>)

Verdict (Sim. results): concaveTSP is **on par** with other TSP approximation methods for **small number of boats** (<1000 vertices). For **big datasets** (1000+ vertices, regular and hexagonal grid) concaveTSP is **competitive** (fast, shorter tour).

Pathfinding in CS Grid: Research Impacts

- Coverage framework for general EFV:
 Cost savings and less carbon footprint
- Bigger operation range/area for EFVs
- Optimized delivery with EFVs
- Optimized industrial place inspection with EFVs
- Theoretical impacts on SCP, TSP, and VRP

Boat Rescue: Publications 3-5

Kilic K.I., Mostarda L. (2021) Optimum Path Finding Framework for Drone Assisted Boat Rescue Missions. In: Barolli L., Woungang I., Enokido T. (eds) Advanced Information Networking and Applications. AINA 2021. Lecture Notes in Networks and Systems, vol 227. Springer, Cham. **DOI**: https://doi.org/10.1007/978-3-030-75078-7 23

- Kilic K.I., Mostarda L. (2021) Heuristic Drone Pathfinding over Optimised Charging Station Grid. IEEE Access, vol. 9, pp. 164070-164089.
 - DOI: https://doi.org/10.1109/ACCESS.2021.3134459
- Kilic K.I., Mostarda L. (2022) Novel Concave Hull-Based Heuristic Algorithm For TSP, Operations Research Forum, Springer Nature, 3(2):25, DOI: https://doi.org/10.1007/s43069-022-00137-9

Epilogue

Idea: Geometry Helps!

How did proposed heuristics utilize Geometry?

- They exploited the existing geometric configurations of the entities: Voronoi-Delaunay Structs., Convex/Concave Hulls.
- They introduced geometric regularities for their configurations: Grids, Circle Packing.
- Algebra that "sees" through Geometry!

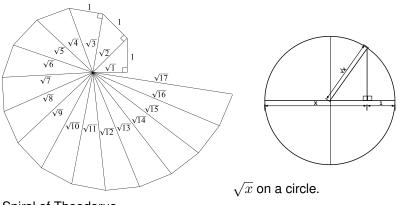
Paraphrasing Sophie Germain:

Geometry draws Algebra and Algebra writes Geometry!

Geometric Techs. Used

Basic novel recipes proposed:

- Voronoi-Delaunay Structs: Good for "Neighborhood" discovery and "near-distant region" division.
- Grids (Special Voronoi-Delaunay Struct): Regularity can be exploited for pathfinding. Extreme cases with "Manhattan Distances" (A7).
- Convex/Concave Hulls: Good for sorting vertices topologically and distance wise.
- Circle Packing (CP): Good initial soln for SCP with Evolutionary Algos (EAs).


Representation matters!

 \bullet 1614 \times 564 = 910296

Roman Numerals:

 $MDCXIV \times DLXIV =$ Error: number too big!

Geometry as Universal Language?

Spiral of Theodorus.

https://en.wikipedia.org/wiki/Spiral_of_Theodorus

https://www.youtube.com/watch?v=WD-Ebz5No5Y
https://en.wikipedia.org/wiki/Geometric mean

Representation matters! Finding \sqrt{x} with Geometry.

Region Coverage: Future Works

- Heterogeneous/Random drone altitudes can be tried for generating initial solutions.
- Heterogeneous BSs can be tried by utilizing "Weighted Voronoi Tessellation".

Pathfinding in CS Grid: Future Works

- Decentralized control.
- Single BS Multi drone scheme (VRP case).
- Multi BS Single drone per BS scheme with Voronoi Tesselation of the region.
- Multi BS Multi drone per BS scheme (VRP + Voronoi Tesselation).
- Boat to boat rescue "leaps" through "bin-packing".

Thanks Questions?

Appendix

Research Visions, Motivations and Goals

In general:

- "Ground traffic" problems: Expensive, accidents, high land-use, high carbon footprint.
- EFVs/EVs are versatile and have great future and benefits.
- Optimization for the best usage of the onboard energy.
- Smart optimized "charging" infrastructure for greater range of operation with EVs/EFVs.
- Geometric representations of entities help for heuristic optimizations.

Research Visions, Motivations and Goals

Specifically:

- Drones are useful mobile IoT platforms.
- They help for temporary conn. away from BSs when the BS is down.
- Coverage(static) and Pathfinding(dynamic) are two fundamental operations for drones.
- Geometry of entities can be exploited/regulated for better optimization heuristics in these operations.
- Establish and explore the interdependence and synergy between CS grid config and the pathfinding for optimum coverage and optimum flight distance.

Overall Research Paradigm

- Quantitative research: Benchmarking, metrics, measurements.
- Positivist research paradigm:
 - Ontological view: The "optimum" exist and quantifiable.
 - ► Epistemological view: The "optimum" can be measured, but difficult to find → NP-Hard problem → Approx. algorithms. (Von Neumann Arch & binary logic are assumed).
- Experimental methodology: Algorithm benchmarks.
- Statistical verification for measurements: Results are verified/explained with statistical tests.
- My default meta RQs:
 - How can I contribute? Propose novel and useful stuff
 - How can I generalize? Propose paradigm, principle

Research Steps

The activities related to the research process can be listed as:

- Literature Review
- Determination of research gaps
- Discussion of research gaps and research questions for novel contributions
- Theoretical analyses for methods and proofs
- Implementation of proposed models and methods
- Experimental verification of proposed models and methods
- Statistical verification of the results

Region Coverage: Research Questions

- (Possibility) How difficult is to find optimum (min cost) complete coverage?
 - \triangleright \mathcal{NP} -Hard problem \rightarrow **Approx. algorithms**.
 - Complex problem formulation → Heuristic EAs (GA/SA).
 - ► Multi-objective multi-party problem → **Trade-offs** → **Optimization**.
- (How) How can we effectively optimize the coverage? Parties, essential objectives?
 - Design fitness func. for EAs, supply Init. Soln. and benchmark several algos.
 - Drones and the region are the parties.
 - Objectives for drones: Min distance of flight for drones (energy).
 - Objectives for the region: Max coverage, min overlap, min overflow.

Region Coverage: Research Questions

- (Technical details) What kind of framework we can design for such optimization?
 - ► Assumptions for the experiments (A5): Fixed number of drones, artificial region (400x300px), single BS.
 - Weighted sum of objectives for different scenarios in fitness func.
 - ▶ Different EAs: Population based/Single soln, Stochastic/Systematic jumps to avoid local min/max.
- (Extension) How can we extend the optimization framework for "bigger regions"?
 - Opt. needs more time, IFDs and VBS can be overloaded -multi-BS, multi region.
 - Divide and conquer → Voronoi Tessellation of the big region.
 - In parallel optimization and load balanced comm.

Priority based multi-objective scoring

$$Score = W_c \times CP + W_l \times OlpP + W_f \times OfwP + W_d \times TotDP$$

 W_c, CP Coverage weight and percentage (Maximize)

 $W_l, OlpP$ Overlap weight and percentage (Minimize)

 $W_f, OfwP$ Overflow weight and percentage (Minimize)

 $W_d, TotDP$ Distance weight and Normalized % total distance differences from the max distance[†] from all drones

 $TotDP = 100 \times \frac{(maxDist \times N - sumDist)}{(maxDist \times N)}$ (Maximize)

†: Max 3D distance from the VBS in the operation region.

Scenarios for coverage

Table: Application cases and proposed set of weights for objectives.

Application type (Scenario)	W_c	$oldsymbol{W}_l$	$oldsymbol{W}_f$	$oldsymbol{W}_d^\dagger$
S1: Max coverage with no compromise	+	0	0	0
S2: Max coverage with only overlap/overflow penalty	+	-	-	0
S3: Max coverage with overlap/overflow penalty and min total distance of drones from VBS	+	-	-	+
S4: Max coverage with only min total distance of drones from VBS	+	0	0	+

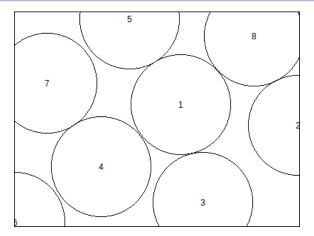
^{†:} Normalized total distance differences from the max distance in the mission region from all drones.

Parameters: Region coverage experiments

Parameter	Value						
Region length	400m						
Region width	300m						
Min height for drones	5m						
Max height for drones	150m						
Theta angle for drones	30°						
Number of drones	2, 4, 6, 8, 10, 12						
Algorithms	GA, GenSA, DEoptim						

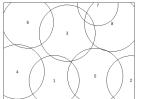
Benchmarking Results

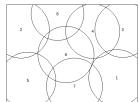
- DEoptim was the fastest
- GenSA+InitSoln was the best in finding highest covering ratio
- GA with no InitSoln was the best in finding min tot dist for the drones

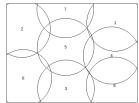


		Time(sec)							Cov	r(%)			TDist(m)						
Drones	Scn	DO	GA		S	A I	IS	DO	GA		SA		IS	DO	GA		SA		
			With	No	With	No			With	No	With	No			With	No	With	No	
2	S1	13.82	209.3	361.92	743.39	729.64	21.94	40.05	40.05	40.05	40.05	40.05	475.6	565.26	564.74	596.96	666.55	597.95	
	S2	15.27	196.86	207.18	712.06	719.62	21.94	40.05	40.05	40.05	40.05	40.05	475.6	652.55	608.76	627.69	636.88	540.39	
	S3	39.78	163.48	178.62	716.18	699.62	21.94	40.04	37.74	40.05	40.04	40.04	475.6	508.32	500.19	509.66	507.35	508.7	
	S4	30.9	202.51	226.14	711.26	710.78	21.94	39.56	39.36	39.13	39.56	39.56	475.6	493.09	488.73	484.75	493.21	493.42	
	S1	166.32	153.86	153.47	1000.78	1000.75	57.24	76.33	76.12	75.36	76.48	76.48	1322.59	1212.75	1215.67	1185.11	1232.22	1233.37	
4	S2	155.98	308.28	157.75	1001.01	1000.71	57.24	73.5	74.62	71.82	75.74	75.74	1322.59	1161.65	1177.85	1180.21	1201.64	1223.76	
*	S3	189.84	200.94	225.61	1000.92	1000.77	57.24	71.23	65.85	66.34	70.9	72.43	1322.59	1177.95	1083.5	1045.09	1097.27	1129.37	
	S4	197.45	175.2	153.91	1001.12	1001.65	57.24	76.1	76.11	75.09	76.16	76.14	1322.59	1187.73	1194.66	1160.29	1185.27	1185.03	
6	S1	427.51	511.38	577.94	1000.73	1000.75	69.59	95.86	95.8	95.38	96.42	96.43	1760.01	1880.97	1828.03	1851.19	1854.81	1853.23	
	S2	378.26	251.65	236.42	1000.74	1000.72	69.59	87.65	83.69	86.43	87.1	89.48	1760.01	1841.02	1859.63	1753.23	1795.94	1793.11	
	S3	390.51	325.48	425.98	1000.72	144.12	69.59	84.73	77.55	77.93	72.73	82.43	1760.01	1673.83	1530.65	1517.62	1275.02	1413.54	
	S4	416.64	481.24	281.81	1000.76	1002.13	69.59	95.02	95.18	87.69	96.09	96.12	1760.01	1807.89	1796.11	1693.77	1813.75	1812.89	
	S1	269.4	437.34	524.35	1000.76	1000.77	75.61	94.63	98.07	99.24	99.9	99.97	2457.35	2534.07	2483.6	2431.52	2510.69	2499.34	
8	S2	269.91	458.04	364.65	1000.94	1000.72	75.61	78.96	83.72	83.04	90.68	89.75	2457.35	2343.94	2402.89	2270.75	2462.48	2486.55	
•	S3	647.31	445.35	502.83	179.23	189.01	75.61	76.98	81.8	80.6	84.85	76.96	2457.35	1688.09	2306.31	2227.58	1985.03	1638.37	
	S4	694.71	372.77	394.13	1000.84	1001.92	75.61	96.14	98.37	98.08	98.7	98.32	2457.35	2120.46	2423.06	2293.7	2218.2	2178.36	
	S1	935.31	789.75	1652.59	377.51	363.53	67.29	99.98	100	99.98	100	100	3112.84	3118.6	3109.22	2981.74	3018.26	3136.28	
10	S2	394.58	609.55	1439.43	1000.79	1000.81	67.29	81.67	84.91	86.08	89.91	89.02	3112.84	2699.96	2796.58	2854.54	3206.29	2998.3	
10	S3	532	203.99	878.5	110.4	78.42	67.29	85.91	85.37	80.36	85.19	85.29	3112.84	2335.38	2561.08	2501.69	2257.09	2310.3	
	S4	742.62	554.54	894.4	604.63	201.47	67.29	98.03	99.08	99.51	99.26	98.49	3112.84	2690.57	2657.05	2763.19	2520.76	2439.56	
	S1	772.97	638.99	1230.49	274.62	240.81	73.98	99.92	100	99.91	100	100	3518.39	3882.51	3617.53	3399.39	3663.7	3655.72	
12	S2	278.42	657.43	1016.11	1000.92	1002	73.98	69.41	86.77	84.23	89.53	89.46	3518.39	2853.03	3438	3278.39	3367.15	3230	
12	S3	602.03	1156.61	341.71	145.89	236	73.98	85.36	85.47	82.56	89.66	84.48	3518.39	3011.19	3423.38	2719.09	2776.8	2669.1	
	S4	1296.59	744.6	528.75	174.49	192.89	73.98	97.09	99.86	98.67	97.18	98.76	3518.39	2860.62	3268.05	2947.51	2755.3	2943.88	
S1 # o	1 st	3	0	1	0	2	-	1	3	1	4	6	-	0	2	4	0	0	
S2 # of 1 st		5	0	1	0	0	-	1	1	1	5	3	-	3	0	2	0	1	
S3 # o	1st	2	0	0	2	2		2	0	1	2	1	-	0	1	1	2	2	
S4 # o	1st	1	1	2	1	1		1	1	1	3	2	-	1	0	3	1	1	
Tot # o	f 1 st	11	1	4	3	5	-	5	5	4	14	12	-	4	3	10	3	4	

The weights (W_c, W_l, W_f, W_d) were, (1, 0, 0, 0), (1, -1, -1, 0), (1, -1, -1, 0.5), (1, 0, 0, 0.5) respectively for scenarios 1, 2, 3, and 4 respectively.


Initial Solution for Region Coverage




Initial solution for 8 drones (Hexagonal CP algorithm). Cov: 75.61%. TDist: 2457.35 m. Time: < 1 sec. (Ref:4)

Region Coverage: Example Optimizations

DEoptim [3]

Cov: 94.63% TDist: 2534.07 m

Time: 269.40 secs

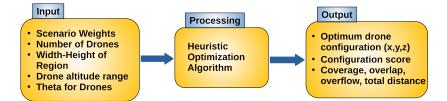
Best in Time

GA [23]

Cov: 99.24%

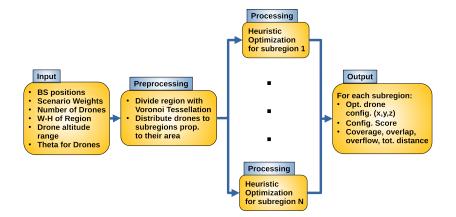
TDist: 2431.52 m

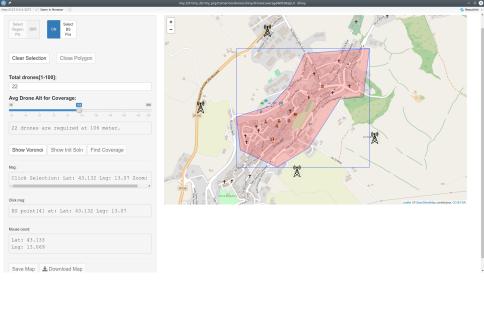
Time: 524.35 secs. Best in TDist(Energy) GenSA [25]

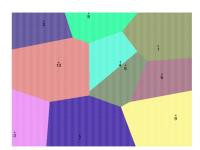

Cov: 99.97%

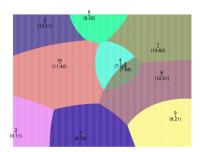
TDist: 2499.34 m Time: 1000.78 secs

Best in Coverage


Solutions for 8 drones (no initial solution), overflow-overlap ignored, max region coverage. VBS at UL. (Good comparisons of EAs in [20])


SingleBS Region Coverage: Process Flow


MultiBS Region Coverage: Process Flow



ppendix] [Research] [Coverage] [Extension] [Pathfinding] [Publications] [References]

Voronoi Tessellation Types

Tessellation for homogeneous site points.

Tessellation for heterogeneous site points with normalized weights (percentages).

Boat Rescue: Objectives, preferences

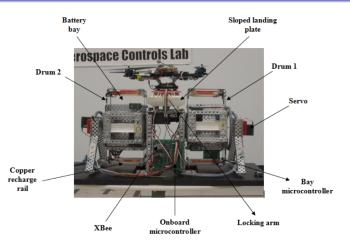
- OS Grid related objectives:
 - Min number of CSs.
 - ▶ **No blind-spot** (unreachable spots) in the mission region.
- Pathfinding related objectives:
 - Shortest Path/Tour for the drone.
 - Min Average Waiting Distance in case of multiple boats.
 - Min number of chargings for the drone.
 - Boat priorities can be considered.

Research in charging techs for drones

- Contact based [5]
- Battery Swapping [19]
- Drone Swapping [9]
- Contactless:
 - Wireless Power Transfer [26]
 - Laser-Powered UAV wireless communication [21]

Contact-based CS

https://skycharge.de/charging-pad-outdoor


Contact-based CS: Contact points

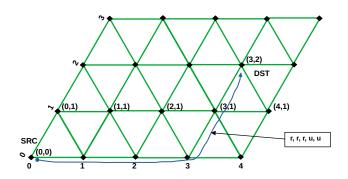
https://skycharge.de/charging-pad-outdoor

Appendix Research Coverage Extension Fathfinding Publications References

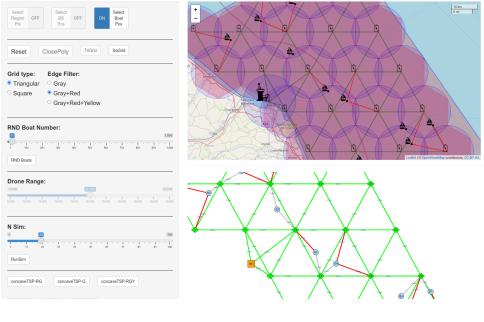
Battery Swapping Station

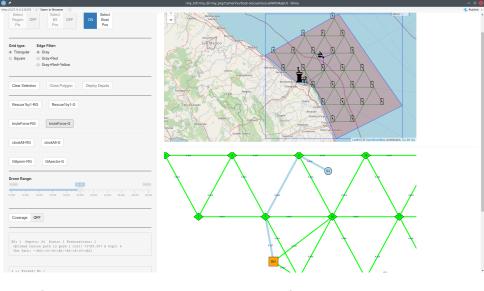
Michini, B., Toksoz, T., Redding, J., Michini, M., How, J., Vavrina, M. & Vian, J. (2011), Automated Battery Swap and Recharge to Enable Persistent UAV Missions, in 'Infotech@Aerospace 2011'. http://dx.doi.org/10.2514/6.2011-1405

Boat Rescue: Observations

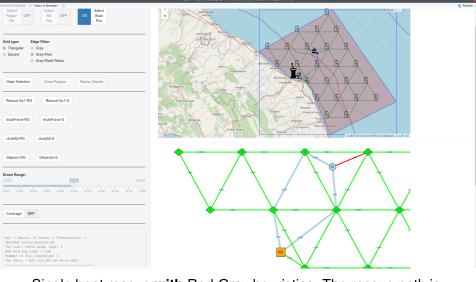

- The **drone range** is the crucial parameter for the framework.
- CS grid should be deployed based on the drone range to prevent "blind-spots".
- CS grid should have a regular geometry covering the mission region.
- This geometry can be exploited for easier path finding (Never underestimate the power of regularity!)
- In extreme regularity even polynomial solution!

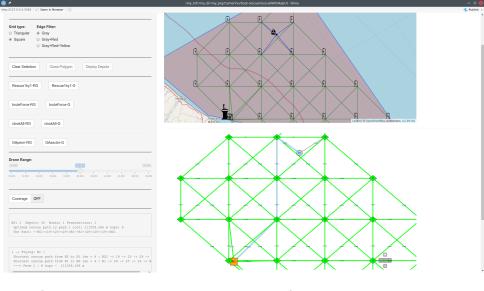
Extreme Regularity - "Easier path finding"

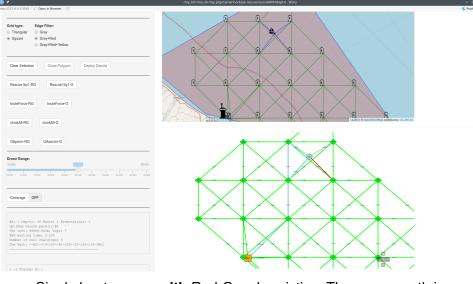

SP from (0,0) to (3,2) involves paths with length of 5 that goes 2 up* and 3 right. Total $= \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 10$ paths Ex:


u, u, r, r, r \rightarrow (0,1), (0,2), (1,2), (2,2), (3,2) u, r, u, r, r \rightarrow (0,1), (1,1), (1,2), (2,2), (3,2) up': Special up, away from the SRC towards DST

```
\begin{aligned} & \text{SP from } (x_1,y_2) \text{ to } (x_2,y_2) \\ & \text{Has path length} = \left[ (y_2-y_1) \right] + \left[ (x_2-x_1) \right] \\ & \text{Number of paths} = \left[ \frac{\left[ (y_2-y_1) \right] + \left[ (x_2-x_1) \right]}{\left[ (y_2-y_1) \right]} \\ & = \left[ \frac{\left[ (y_2-y_1) \right] + \left[ (x_2-x_1) \right]}{\left[ (x_2-x_1) \right]} \end{aligned}
```

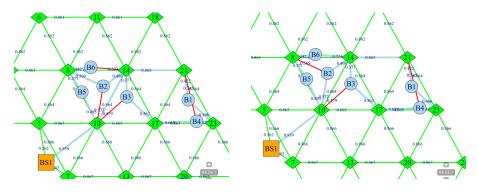




Single boat rescue **without** using Red-Gray heuristics. The rescue path is 73785.397m 6 hops 6 chargings.


Single boat rescue with Red-Gray heuristics. The rescue path is 66853.422m (9.4% shorter) 5 hops 5 chargings (less charging).

▶ Ref:16

Single boat rescue **without** using Red-Gray heuristics. The rescue path is 111558.366m 8 hops 8 chargings.



Single boat rescue with Red-Gray heuristics. The rescue path is 99888.945m (10.5% shorter) 7 hops 7 chargings (less charging). Sq has slight better savings! More simulations!

Multiple boats - Boat Rescue sim for 6 rnd boats:

Metric	redGraySP	BF RedGray			
Rescue order	B5+B6+B2+B1+B4+B3	B5→B6→B3→B4→B1→B2			
Tour cost	177086.641m, hops: 16	162708.808m, hops: 15			
AWD	78524.963m	74979.52m			
NChargings	9	8			
Rescue Path	BS1+10+B5+8+B6+8+B2+14+21+B1+23+B4+17 +B3+14+10+BS1	BS1+10+B5+8+B6+14+B3+17+B4+23+B1+21+14 +B2+10+BS1			

6 Boats Rescue Comparison (Single run!)

Table: Approximation Ratio (AR= $\frac{Other}{BFRedGray}$) over Brute-Force RedGray (Optimum) and Running Time improvements (Imp.= $\frac{BFRedGray}{Other}$).

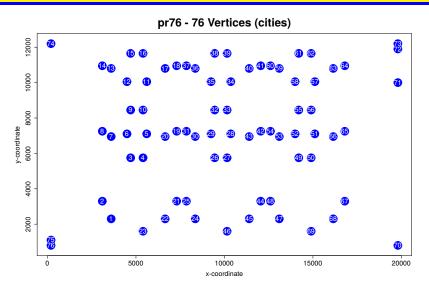
Metric	redGraySP	GraySP	BF Gray	BF RedGray
Tour Cost(m) (AR)	177086.641 (1.09)	214516.268 (1.32)	197294.387 (1.21)	162708.808
AWD(m) (AR)	78524.963 (1.05)	91786.372 (1.22)	83264.743 (1.11)	74979.52
NChargings (AR)	9 (1.12)	12 (1.5)	11 (1.38)	8
Time(sec) (Imp.)	0.291 (56)	0.031 (530)	13.948 (1.18)	16.437

More simulations are necessary!

Custom TSP algo: concaveTSP (A24, A25)

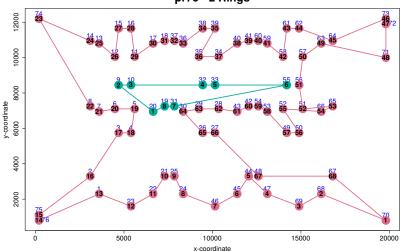
Observations, design, and properties - I:

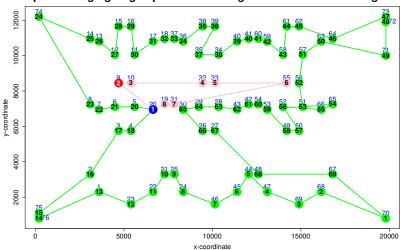
- Inspired by the observation that the optimal TSP tours are non self-crossing, "collapsed" elastic band (x-hull?).
- Experimented with convex and concave hull (Topological and distance sorting). Concave hull gives better results.
- 2-phase algo:
 - Global opt: Concentric concave hulls. Uses geometry of vtx.
 - ▶ Local opt: Merging them in to single tour.

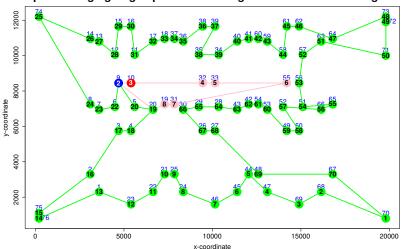


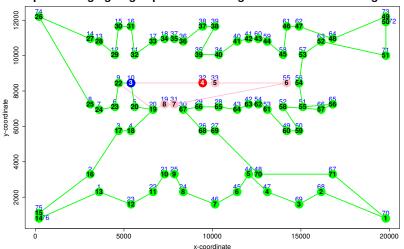
Custom TSP algo: concaveTSP (A24, A25)

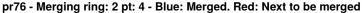
Observations, design, and properties - II:

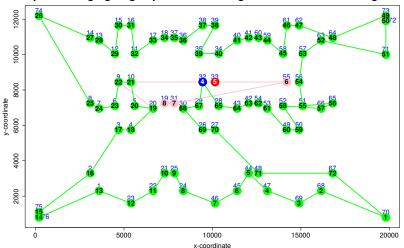

- Use of concentric ConcaveHulls can save from storing all the "Dist. MTX" (minHeap).
- Novel hybrid heuristics for merging: Nearest vertex merging and online 3-edge path improvement heuristics (A14).
- Novel and fast $(\mathcal{O}(N \log N))$ approximation heuristic: Suited to "rescue" operations.
- Gives better results for regular "grid" like datasets.

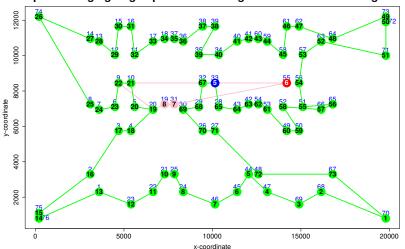


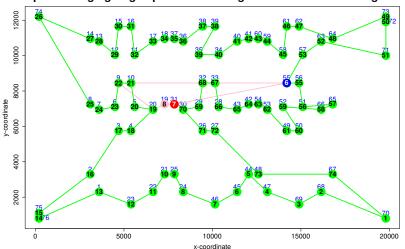


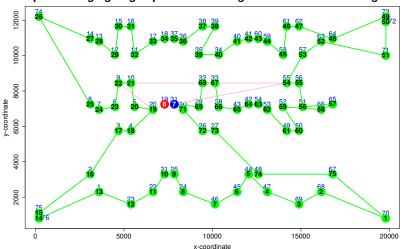

pr76 - Merging ring: 2 pt: 1 - Blue: Merged. Red: Next to be merged

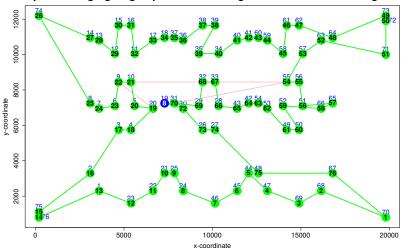


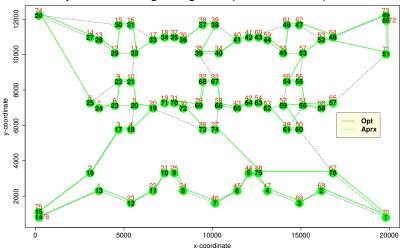

pr76 - Merging ring: 2 pt: 2 - Blue: Merged. Red: Next to be merged

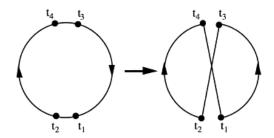

pr76 - Merging ring: 2 pt: 3 - Blue: Merged. Red: Next to be merged

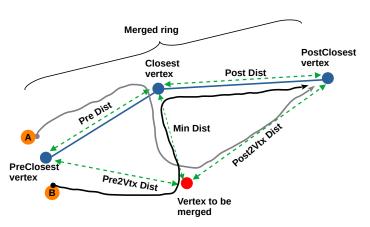



pr76 - Merging ring: 2 pt: 5 - Blue: Merged. Red: Next to be merged


pr76 - Merging ring: 2 pt: 6 - Blue: Merged. Red: Next to be merged


pr76 - Merging ring: 2 pt: 7 - Blue: Merged. Red: Next to be merged


pr76 - Merging ring: 2 pt: 8 - Blue: Merged. Red: Next to be merged



2-Opt: Example 2-edge exchange

Idea of the 2-Opt edge exchanges [10]. Ignore the geometric distances!

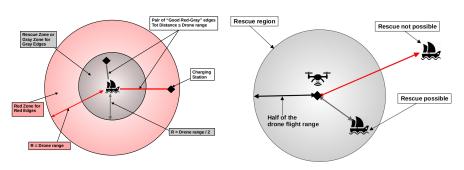
Online 3-edge heuristic

3-edge heuristic used during the merging phase of concaveTSP.

Rescue Drone

DJI MATRICE 300 RTK 15 km transmission range 82 kmph max speed 55 min max flight time 10000+ USD

Triangular vs Square: Edge statistics


Table: Triangular grid, 208449 (3 edges * 69483 points) edges are sampled.

Edges	N	Prob.	Min	Max	Avg
gRG	94118	0.68	0.866	1	0.914
bRG	44838	0.32	1	1.253	1
All-RG	138956	1	0.866	1.253	0.968
gR	94118	0.45	0.502	0.866	0.652
bR	29599	0.14	0.502	0.779	0.677
All-R	123717	0.59	0.502	0.866	0.658
gG	54307	0.26	0	0.496	0.271
bG	30425	0.15	0.364	0.502	0.448
All-G	84732	0.41	0	0.502	0.334
All	208449	1.00	0	0.866	0.527

Table: Square grid, 643204 (4 edges * 160801 points) edges are sampled.

Edges	N	Prob.	Min	Max	Avg
gRG	199504	0.35	0.707	1	0.839
bRG	376064	0.65	1	1.366	1.075
All-RG	575568	1	0.707	1.366	0.993
gR	199504	0.45	0.502	1	0.608
bR	189448	0.14	0.502	0.999	0.749
All-R	388952	0.59	0.502	1	0.677
gG	131280	0.26	0	0.498	0.254
bG	122972	0.15	0.251	0.502	0.419
All-G	254252	0.41	0	0.502	0.334
All	643204	1.00	0	1	0.541

Red-Gray edges and Rescue cond.

Red-gray edges relative to the boat position.

Conditions for rescuing a boat.

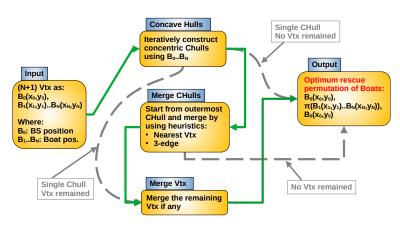
Red-gray edges and rescue conditions.

Rescue Framework Pseudocode

Algorithm The proposed rescue heuristic framework.

- **Input1:** ► RescuePoly: User drawn polygon containing the rescue region.
- **Input2:** ► GridType: User selected CS deployment configuration, tri or sq.
- **Input3:** ▶ DroneRange: User selected drone range.
- **Input4:** ▶ BS and BoatPos: User selected BS and Boat coordinates.
- **Output:** \triangleleft ResTour: The optimum rescue tour: $(V_1 \dots V_K)$
- 1: Grid ← NULL
- 2: VtxList ← NULL

BS and CS Deployment and Boat position selection

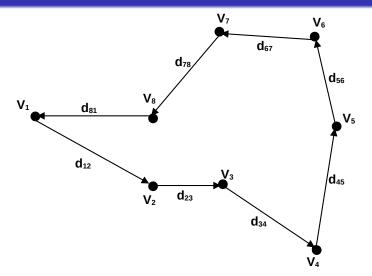

- $\textbf{3: Grid} \leftarrow \textbf{Grid} + \textbf{asVtx}(\textbf{userSelect(BS)})$
- 4: $VtxList \leftarrow VtxList + asVtx(userSelect(BS))$
- 5: Grid ← Grid + asGraph(deployCS(RescuePoly, userSelect(GridType), DroneRange))
- 6: Grid \leftarrow Grid + asGraph(userSelect(BoatPos))
- 7: VtxList ← VtxList + asVtx(userSelect(BoatPos))

Find the Best TSP tour for the BS + Boats for the drone

- 8: concaveTSPTour ← concaveTSP(VtxList)
 - Find the Best Rescue Path for the drone
- 9: ResTour ← redGraySP(concaveTSPTour, Grid)
- 10: Return(ResTour)

concaveTSP Algorithm Flowchart

concaveTSP Algorithm Pseudocode


```
Algorithm The proposed TSP heuristic algorithm.
   Input \triangleright VtxList: Euclidean vertex coords with numbers, (i, X_i, Y_i), i = 1...N
   Output \triangleleft concaveTSPTour: The approximate TSP tour, (V_1 \dots V_N)
   Concave hull construction phase

 CHList ← NULL

 VtxNntVisited ← Vtxl ist

 3: while (|VtxNotVisited| > 2) do
       CH ← concave hull(VtxNotVisited)
       CHList \leftarrow CHList \cup CH
       VtxNotVisited \leftarrow VtxNotVisited \setminus CH
 7: end while
 8. RemainedVty ← VtyNotVisited
   Merging phase: Select the nearest concaveTSPTour vtx and use 3-edge
 9: NSubTour ← |CHList|
10: concaveTSPTour ← CHList[1]
11: if (NSubTour > 2) then
       for each CH ∈ CHList[2..NSubTour] do
13:
          NVtx \leftarrow |CH|
          for each Vtx \in CH[1..NVtx] do
14:
15
             concaveTSPTour ← Merge(concaveTSPTour, Vtx)
          end for
16:
       end for
18: end if
   Merging RemainedVtx if any
19: if (|RemainedVtx| > 2) then
       concaveTSPTour ← Merge(concaveTSPTour, RemainedVtx)
21: end if
22: Return(concaveTSPTour)
```

TSP tour

The TSP tour with 8 vertices, $\tau = (V_1, \dots, V_8)$.

Metrics for TSP tour

Tour Cost
$$(\tau) = \sum_{i=1}^{N-1} d_{(i,i+1)} + d_{(N,1)}$$
 (1)

cyclical - AWD
$$(\tau) = \frac{1}{N} (\sum_{j=2}^{N} \sum_{i=1}^{j-1} d_{(i,i+1)} + d_{(N,1)})$$
 (2)

non-cyclical - AWD
$$(\tau) = \frac{1}{N-1} (\sum_{j=2}^{N} \sum_{i=1}^{j-1} d_{(i,i+1)})$$
 (3)

$$\min \mathsf{AWD}(\tau) = \min(\min(\rho^F_{i=1,\dots,N}(\tau)), \min(\rho^B_{i=1,\dots,N}(\tau))) \tag{4}$$

$$(d_{(i,j)} = Euclidean\ Distance(V_i, V_j))$$

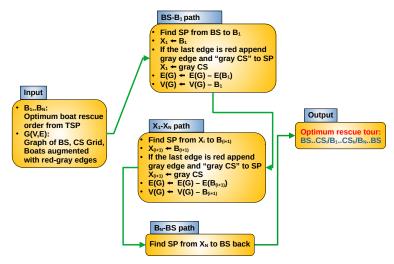
Rotations for TSP tour

For a TSP tour $\tau=(V_1,V_2,V_3,V_4,V_5,V_6,V_7)$ with N=7 : Forward (CW):

$$\rho_0^F(\tau) = (V_1, V_2, V_3, V_4, V_5, V_6, V_7)$$

$$\rho_1^F(\tau) = (V_2, V_3, V_4, V_5, V_6, V_7, V_1)$$

$$\rho_2^F(\tau) = (V_3, V_4, V_5, V_6, V_7, V_1, V_2)$$


Backward (Anti-CW):

$$\rho_0^B(\tau) = (V_1, V_7, V_6, V_5, V_4, V_3, V_2)$$

$$\rho_1^B(\tau) = (V_7, V_6, V_5, V_4, V_3, V_2, V_1)$$

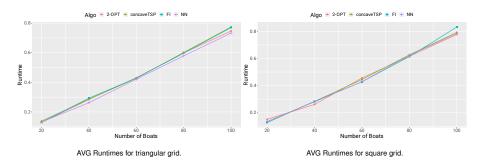
$$\rho_2^B(\tau) = (V_6, V_5, V_4, V_3, V_2, V_1, V_7)$$

redGraySP Algorithm Flowchart

redGraySP Algorithm Pseudocode

```
Algorithm The proposed red-gray shortest path algorithm.
   Input1: ▶ BoatPerm: The approximate TSP tour of boats. (B1...BN)
   Input2: ➤ Grid: Graph of BS, CSs and boats, G(V, E)
   Output: \triangleleft ResTour: The optimum rescue tour. (V_1 \dots V_{k'})
   From BS to the first hoat:
                                                                           E(Grid) ← E(Grid) + redAndgravEdges(nextBoat)
                                                                21:

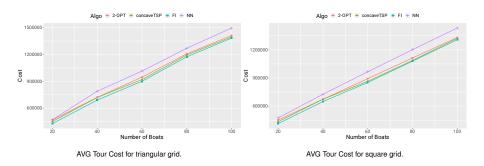
    ResTour ← NULL


                                                                22:
                                                                           V(Grid) ← V(Grid) + asVtx(nextBoat)
   Dynamically augment Grid with the related boats
                                                                           SP ← shortestPath(Grid, src=lastVtx(ResTour).
                                                                23.
2: E(Grid) ← E(Grid) + redAndgravEdges(B<sub>1</sub>)
                                                                    dst=nextBoat)
3: V(Grid) \leftarrow V(Grid) + asVtx(B_1)
                                                                           if colour(lastEdge(SP)) == "red") then
                                                                24:
4: SP ← shortestPath(Grid, src=BS, dst=B<sub>1</sub>)
                                                                              appendEdge(SP) ← E(findAdjacentGoodGravCS(nextBoat))
                                                                25.
5: if colour(lastEdge(SP)) == "red") then
                                                                              appendVtx(SP) \leftarrow V(findAdiacentGoodGravCS(nextBoat))
                                                                26.
      appendEdge(SP) \leftarrow E(findAdjacentGoodGrayCS(B_1))
                                                                27:
                                                                           end if
      appendVtx(SP) \leftarrow V(findAdiacentGoodGravCS(B_1))
                                                                           ResTour ← ResTour + SP
                                                                28.
                                                                           BoatPerm ← BoatPerm - nextBoat
 8 end if
9: ResTour ← ResTour + SP
                                                                    Dynamically de-augment Grid with the related boats

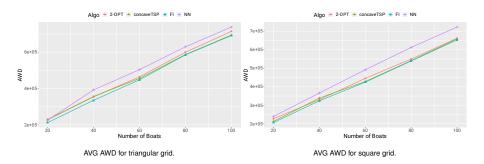
 BoatPerm ← BoatPerm - B<sub>1</sub>

                                                                           E(Grid) ← E(Grid) - redAndgravEdges(prevBoat)
                                                                30:
   Dynamically de-augment Grid with the related boats
                                                                           V(Grid) ← V(Grid) - asVtx(prevBoat)
                                                                31.
   This is to force the rescue order as in the BoatPerm
                                                                           E(Grid) ← E(Grid) - redAndgrayEdges(nextBoat)
                                                                32:
11: E(Grid) ← E(Grid) - redAndgrayEdges(B<sub>1</sub>)
                                                                33.
                                                                           V(Grid) \leftarrow V(Grid) - asVtx(nextBoat)
12: V(Grid) ← V(Grid) - asVtx(B<sub>1</sub>)
                                                                34.
                                                                           prevBoat ← nextBoat
   From the first boat to the last boat:
                                                                        end while
13: if lastVtx(ResTour)) == BS) then
                                                                36: end if
14:
      Return(ResTour)
                                                                    From the last hoat to the BS:
                                                                37: if lastVtx(ResTour)) == BS) then
15: else
      prevBoat \leftarrow B_1
                                                                        Return(ResTour)
16:
      while (BoatPerm ≠ NULL) do
17.
                                                                39 else
18:
          nextBoat 

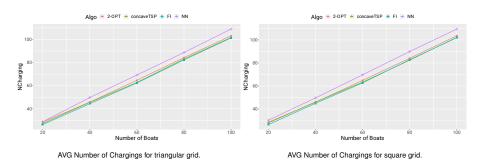
— getNext(BoatPerm)
                                                                        SP ← shortestPath(Grid, src=lastVtx(ResTour), dst=BS)
   Dynamically augment Grid with the related boats
                                                                        ResTour ← ResTour + SP
                                                                41:
          E(Grid) ← E(Grid) + redAndgravEdges(prevBoat)
19:
                                                                42: end if
          V(Grid) ← V(Grid) + asVtx(prevBoat)
                                                                43: Return(ResTour)
20:
```


Pathfinding Benchmarks: AVG Runtime

AVG Runtimes in seconds from 20 sims.


Pathfinding Benchmarks: AVG Tour Cost

AVG Tour Cost in meters from 20 sims.


Pathfinding Benchmarks: AVG AWD

AVG AWD in meters from 20 sims.

Pathfinding Benchmarks: AVG NChargings

AVG Number of Chargings from 20 sims.

Table: Simulation results for triangular and square grid. Savings are for Red-Gray heuristics over only Gray edge usage. **20 boats randomly generated for 20 simulations**. Results are in the form of mean \pm standard deviation.

Grid	Metric	concaveTSP	FI	NN	2-OPT
	RG Cost	452221.4 ± 45194.8	428986 ± 44761.8	472358.8 ± 44207.8	469513.4 ± 54352.4
	G Cost	548381.874 ± 51218.2	524330.3 ± 42431.6	578961.3 ± 56157.4	556431.1 ± 42991.8
	Cost Saving %	17.5 ± 3.5	$\textbf{18.2} \pm \textbf{4.6}$	18 ± 8.3	$\textbf{15.5} \pm \textbf{8.2}$
	RG Time	0.138 ± 0.016	0.13 ± 0.017	0.132 ± 0.021	0.128 ± 0.018
Tri	G Time	0.115 ± 0.017	0.111 ± 0.015	0.106 ± 0.014	0.115 ± 0.025
1111	Time Saving %	-22.5 ± 22.6	-19 ± 24.7	-25.5 ± 25.8	-15.7 ± 26.0
	RG AWD	229580.6 ± 29556.8	212353.9 ± 27475.4	226095.7 ± 27345.6	228387.2 ± 33754.3
	G AWD	260659.2 ± 30823.6	250167.3 ± 25706.1	268733.7 ± 27410.8	264514.2 ± 24029.2
	AWD Saving %	11.4 ± 10.6	15.1 ± 7.6	15.2 ± 12.2	13.4 ± 11.6
	RG NCharging	27.3 ± 2.6	26.4 ± 2.7	28.8 ± 2.5	28.5 ± 3.2
	G NCharging	37 ± 3.0	$\textbf{35.6} \pm \textbf{2.5}$	$\textbf{38.8} \pm \textbf{3.2}$	$\textbf{37.4} \pm \textbf{2.6}$
	NCharging Saving %	26.1 ± 4.6	26.0 ± 5.4	25.3 ± 7.4	23.7 ± 7.5
	RG Cost	433795.7 ± 41318.6	413666.8 ± 39358.3	474235.7 ± 46487.9	452063.7 ± 42498.3
	G Cost	484250.594 ± 45610.3	463520.3 ± 45947.6	503022.3 ± 56043.2	487495.8 ± 44167.4
	Cost Saving %	10.4 ± 2.8	10.6 ± 5.4	$\textbf{5.4} \pm \textbf{6.7}$	7.1 ± 5.6
	RG Time	0.134 ± 0.015	0.127 ± 0.012	0.135 ± 0.019	0.151 ± 0.082
Sq	G Time	0.124 ± 0.017	0.12 ± 0.021	0.113 ± 0.015	0.109 ± 0.011
94	Time Saving %	-10.5 ± 21.0	-8.0 ± 20.8	-21.2 ± 19.3	-40.0 ± 80.1
	RG AWD	212517.9 ± 24600.3	206507.0 ± 27921.9	239400.5 ± 29827.2	227244.7 ± 31700.8
	G AWD	227655.3 ± 23861.4	219690.2 ± 26102.8	232338 ± 25767.3	228410.8 ± 24335.6
	AWD Saving %	6.6 ± 6.8	5.9 ± 7.094	-4.1 ± 16.6	0.5 ± 9.6
	RG NCharging	28 ± 2.5	26.6 ± 1.9	30.4 ± 2.2	28.6 ± 2.6
	G NCharging	35.2 ± 3.1	$\textbf{33.8} \pm \textbf{3.2}$	$\textbf{36.2} \pm \textbf{3.6}$	35.2 ± 2.7
	NCharging Saving %	$\textbf{20.2} \pm \textbf{3.7}$	$\textbf{21.2} \pm \textbf{5.4}$	15.7 ± 5.3	18.7 ± 5.0

Grid	Metric	concaveTSP	FI	NN	2-OPT
	RG Cost	720751.6 ± 45793.7	691249.3 ± 42099.4	790136.0 ± 59432.8	721864.5 ± 50161.6
	G Cost	872883.2 ± 62339.7	840797.8 ± 66965.2	932849.2 ± 80359.5	885781.1 ± 57051.8
	Cost Saving %	17.4 ± 2.3	17.6 ± 3.1	$\textbf{15.0} \pm \textbf{6.6}$	$\textbf{18.4} \pm \textbf{4.4}$
	RG Time	0.286 ± 0.027	0.293 ± 0.066	0.262 ± 0.027	0.284 ± 0.082
Tri	G Time	0.233 ± 0.014	0.236 ± 0.024	0.24 ± 0.023	0.232 ± 0.021
***	Time Saving %	-23.7 ± 16.6	-26.1 ± 36.2	-10.7 ± 20.8	-24.8 ± 43.4
	RG AWD	355812.2 ± 28430.5	335152.0 ± 18936.2	392548.8 ± 52073.8	353986.5 ± 25156.5
	G AWD	423383.2 ± 33027.5	409855.1 ± 32340.7	441702.0 ± 37025.5	426331.5 ± 28120.4
	AWD Saving %	15.8 ± 5	18.0 ± 4.9	11.1 ± 9.5	$\textbf{16.9} \pm \textbf{5.0}$
	RG NCharging	45.6 ± 2.5	44.4 ± 2.3	49.8 ± 3.1	45.8 ± 2.0
	G NCharging	60.5 ± 3.8	58.8 ± 3.0	64.0 ± 4.5	$\textbf{61.4} \pm \textbf{2.9}$
	NCharging Saving %	24.5 ± 3.2	24.4 ± 3.4	$\textbf{21.9} \pm \textbf{6.8}$	25.3 ± 4.1
	RG Cost	674039.5 ± 44620.1	648563.9 ± 47506.8	726830.7 ± 62542.1	672992.2 ± 41647.4
	G Cost	752414.9 ± 45426.4	723336.2 ± 41700.1	806233.0 ± 65459.6	760135.2 ± 38325.9
	Cost Saving %	10.4 ± 3.0	$\textbf{10.3} \pm \textbf{4.2}$	9.7 ± 5.6	11.3 ± 6.2
	RG Time	0.283 ± 0.025	0.284 ± 0.076	0.28 ± 0.021	0.261 ± 0.016
Sq	G Time	0.271 ± 0.083	0.244 ± 0.022	$\textbf{0.255} \pm \textbf{0.08}$	0.248 ± 0.021
Зq	Time Saving %	-9.4 ± 21.3	-17.8 ± 37.9	-15.4 ± 22.1	-6.2 ± 13.5
	RG AWD	338778.0 ± 25650.2	323931.2 ± 26247.0		329932.0 ± 31020.0
	G AWD	364926.3 ± 24261.6	347338.3 ± 23588.8	385326.7 ± 37316.1	366898.4 ± 18717.9
	AWD Saving %	$\textbf{7.0} \pm \textbf{5.8}$	6.6 ± 7.5	4.6 ± 11.7	9.9 ± 9.6
	RG NCharging	46.2 ± 1.9	45 ± 2.5	49.7 ± 3.2	46.0 ± 2.1
	G NCharging	57.7 ± 3.1	55.8 ± 2.8	60.6 ± 3.4	57.8 ± 2.8
	NCharging Saving %	$\textbf{19.8} \pm \textbf{4.5}$	$\textbf{19.3} \pm \textbf{4.9}$	17.9 ± 5.1	$\textbf{20.4} \pm \textbf{5.8}$

Grid	Metric	concaveTSP	FI	NN	2-OPT
	RG Cost	920434.6 ± 32296.1	901084.1 ± 39776.9	1014695.3 ± 48015.6	947449.5 ± 47647.7
	G Cost	1122678.6 ± 54088.8	1109086.4 ± 58758.0	1223358.7 ± 73658.9	1148255.4 ± 47218.4
	Cost Saving %	17.9 ± 2.3	18.7 ± 3.2	$\textbf{16.9} \pm \textbf{4.8}$	17.4 ± 3.9
	RG Time	0.427 ± 0.02	0.429 ± 0.012	0.421 ± 0.019	0.431 ± 0.074
Tri	G Time	0.4 ± 0.07	0.382 ± 0.025	0.374 ± 0.023	0.388 ± 0.068
	Time Saving %	-8.5 ± 11.8	-12.5 ± 6.5	-12.8 ± 6.8	-13.2 ± 23.4
	RG AWD	455620.9 ± 23194.3	447833.4 ± 25049.2	503701.6 ± 46465.3	464278.8 ± 31067.5
	G AWD	547482.7 ± 32740.8	539610.8 ± 30919.0	583976.3 ± 40899.3	548870.2 ± 33839.5
	AWD Saving %	$\textbf{16.7} \pm \textbf{3.7}$	16.9 ± 4.8	13.3 ± 10.5	15.3 ± 5.5
	RG NCharging	62.8 ± 2.1	62.4 ± 1.8	69.2 ± 2.4	64.7 ± 2.9
	G NCharging	81.4 ± 3.2	80.6 ± 3.6	87.3 ± 4.4	82.8 ± 3.0
	NCharging Saving %	$\textbf{22.8} \pm \textbf{3.2}$	$\textbf{22.5} \pm \textbf{3.9}$	$\textbf{20.5} \pm \textbf{3.6}$	$\textbf{21.8} \pm \textbf{3.1}$
	RG Cost	864874.0 ± 41174.3	852019.4 ± 39644.0	966629.2 ± 54690.3	892968.7 ± 57206.6
	G Cost	977309.5 ± 52123.8	953718.8 ± 58872.9	1052405.6 ± 61678.2	988270.3 ± 61886.8
	Cost Saving %	11.4 ± 2.4	10.5 ± 4.1	8.0 ± 5.6	9.5 ± 5.4
	RG Time	0.445 ± 0.024	0.428 ± 0.019	0.429 ± 0.021	0.456 ± 0.097
Sq	G Time	0.427 ± 0.064	0.395 ± 0.02	0.403 ± 0.077	0.392 ± 0.022
Sq	Time Saving %	-5.5 ± 10.2	-8.6 \pm 6.2	-8.5 \pm 12.6	-17.0 ± 27.1
	RG AWD	428230.9 ± 25205.0	424685.0 ± 25096.3	491356.2 ± 34682.3	445149.7 ± 30371.0
	G AWD	470800.3 ± 28575.7	463554.5 ± 31222.1	501983.1 ± 38491.1	473394.2 ± 32971.8
	AWD Saving %	8.9 ± 4.5	8.1 ± 6.3	1.8 ± 7.8	5.7 ± 7.4
	RG NCharging	63.4 ± 1.7	62.8 ± 1.7	69.8 ± 3.2	64.9 ± 2.7
	G NCharging	78 ± 2.5	$\textbf{75.9} \pm \textbf{3.2}$	81.8 ± 3.8	78.0 ± 3.2
	NCharging Saving %	18.6 ± 3.5	17.2 ± 3.8	14.6 ± 4.2	16.6 ± 4.0

Grid	Metric	concaveTSP	FI	NN	2-OPT
	RG Cost	1193873.4 \pm 72509.5	1173711.2 ± 65385.8	1269457.7 ± 91281.2	1207666.7 ± 74836.9
	G Cost	1435808.0 ± 76420.3	1406063.3 ± 103009.1	1521348.4 ± 90490.4	1452633.4 ± 85168.4
	Cost Saving %	$\textbf{16.8} \pm \textbf{2.3}$	16.4 ± 3.8	16.5 ± 3.6	16.8 ± 3.4
	RG Time	0.602 ± 0.024	0.597 ± 0.059	0.579 ± 0.016	0.599 ± 0.057
Tri	G Time	0.545 ± 0.012	0.54 ± 0.021	0.546 ± 0.045	0.531 ± 0.013
III	Time Saving %	-10.5 \pm 4.1	-10.5 ± 11.4	-6.6 ± 7.6	-13.0 ± 11.4
	RG AWD	586966.9 ± 29048.0	584999.6 ± 29249.8	629485.6 ± 49728.9	599470.5 ± 41282.2
	G AWD	701345.6 ± 36936.2	684808.4 \pm 53810.1	736745.9 ± 42902.6	707968.4 ± 43998.6
	AWD Saving %	$\textbf{16.4} \pm \textbf{2.6}$	14.3 ± 5.4	14.4 ± 7.4	$\textbf{15.3} \pm \textbf{3.3}$
	RG NCharging	83.2 ± 2.4	82.3 ± 1.7	88.7 ± 3.3	84.3 ± 2.0
	G NCharging	$\textbf{104.5} \pm \textbf{3.7}$	103.0 ± 3.9	109.5 ± 4.0	$\textbf{105.8} \pm \textbf{3.8}$
	NCharging Saving %	$\textbf{20.4} \pm \textbf{2.4}$	$\textbf{20.0} \pm \textbf{3.0}$	18.9 ± 3.1	$\textbf{20.2} \pm \textbf{3.0}$
	RG Cost	1087114.7 ± 41665.8	1079338.9 \pm 41120.3	1202759.3 ± 62191.1	1113741.6 ± 53598.5
	G Cost	1204612.8 ± 53285.4	1202933.5 ± 45489.3	1294414.3 ± 63389.2	1251674.3 ± 75083.5
	Cost Saving %	9.7 ± 2.7	$\textbf{10.2} \pm \textbf{2.9}$	6.7 ± 5.2	$\textbf{10.8} \pm \textbf{5.0}$
	RG Time	0.627 ± 0.032	0.614 ± 0.02	0.624 ± 0.06	0.616 ± 0.021
Sq	G Time	0.575 ± 0.021	0.579 ± 0.061	0.596 ± 0.077	0.563 ± 0.019
Sq	Time Saving %	-9.1 ± 6.6	-6.8 ± 8.6	-6.2 ± 16.3	-9.6 ± 4.7
	RG AWD	540783.1 ± 27959.0	538915.9 ± 28640.4	612312.0± 46168.5	549134.7 ± 36898.8
	G AWD	589200.9 ± 28054.9	584540.6 ± 21146.8	616422.4 ± 34841.8	607477.8 ± 34821.5
	AWD Saving %	$\textbf{8.2} \pm \textbf{3.9}$	$\textbf{7.8} \pm \textbf{4.2}$	$\textbf{0.5} \pm \textbf{7.8}$	$\textbf{9.4} \pm \textbf{7.2}$
	RG NCharging	$\textbf{82.4} \pm \textbf{2.4}$	82.8 ± 2.1	90.0 ± 2.9	84.1 ± 2.8
	G NCharging	$\textbf{97.3} \pm \textbf{4.0}$	97 ± 4.0	102.7 ± 4.0	100.4 ± 4.9
	NCharging Saving %	15.2 ± 3.6	14.5 ± 3.4	12.3 ± 4.1	16.1 ± 4.2

form of mean \pm standard deviation.

Grid	Metric	concaveTSP	FI	NN	2-OPT
	RG Cost	1396244.1 ± 59737.2	1382759.1 ± 49286.5	1495121.1 ± 58477.8	1411860.7 ± 60752.0
	G Cost	1661578.8 ± 85371.8	1623590.9 ± 88023.8	1740390.5 ± 108055.0	1682288.9 ± 60739.8
	Cost Saving %	15.9 ± 2.2	14.7 ± 3.4	13.9 ± 4.1	$\textbf{16.0} \pm \textbf{3.0}$
	RG Time	0.774 ± 0.071	0.77 ± 0.08	0.733 ± 0.014	0.747 ± 0.02
Tri	G Time	0.721 ± 0.078	0.698 ± 0.012	0.693 ± 0.012	0.696 ± 0.011
	Time Saving %	-8.4 ± 14.7	-10.4 ± 13.0	-5.8 \pm 2.3	-7.5 ± 3.2
	RG AWD	694099.1 ± 30895.1	691196.4 ± 26685.4	738222.4 ± 48601.1	714325.9 ± 42378.5
	G AWD	813660.4 ± 42993.1	792946.9 ± 47939.9	827134.7 ± 46929.7	821965.4 ± 33998.7
	AWD Saving %	$\textbf{14.6} \pm \textbf{3.1}$	12.6 ± 4.5	10.5 ± 7.7	13.1 ± 4.2
	RG NCharging	101.7 ± 2.2	101.4 ± 2.0	109 ± 2.5	103.1 ± 2.6
	G NCharging	125.2 ± 4.008	1 ± 4.2	129.6 ± 4.8	126.2 ± 3.2
	NCharging Saving %	18.7 ± 2.8	17.5 ± 2.8	15.8 ± 3.3	$\textbf{18.3} \pm \textbf{2.2}$
	RG Cost	1323625.9 ± 47004.3	1308544.6 ± 36527.9	1433151.1 ± 72536.7	1332355.1 ± 49288.4
	G Cost	1453297.1 ± 66877.8	1436964.1 ± 63498.9	1545871.9 \pm 68780.6	1475904.1 ± 47047.5
	Cost Saving %	8.9 ± 2.2	8.8 ± 3.3	7.2 ± 3.6	9.7 ± 3.5
	RG Time	0.792 ± 0.029	0.832 ± 0.13	0.784 ± 0.034	0.777 ± 0.023
Sq	G Time	0.758 ± 0.025	0.741 ± 0.032	0.742 ± 0.028	0.74 ± 0.033
Sq	Time Saving %	-4.6 ± 3.8	-12.6 ± 19.2	-5.8 ± 5.4	-5.1 ± 4.7
	RG AWD	658603.1 ± 24126.3	653044.7 ± 25061.3	722387.9 ± 51718.8	662079.8 ± 38094.0
	G AWD	712229.3 ± 35801.1	702810.9 \pm 31125.1	738183.7 ± 31901.1	717612.3 ± 26269.5
	AWD Saving %	$\textbf{7.4} \pm \textbf{3.2}$	$\textbf{7.0} \pm \textbf{3.1}$	$\textbf{2.1} \pm \textbf{6.9}$	7.7 ± 5.4
	RG NCharging	102.3 ± 1.5	102.0 ± 1.4	109.4 ± 3.6	103.6 ± 2.1
	G NCharging	118.1 ± 4.4	116.9 ± 4.4	123.0 ± 4.3	119.2 ± 3.6
	NCharging Saving %	13.3 ± 3.1	12.7 ± 2.8	10.9 ± 3.2	13.0 ± 2.8

Table: Simulation results for triangular and square grid. Savings are for Red-Gray heuristics over only Gray edge usage. Approximation ratios and Speed-ups are over Brute-Force method. 4 boats randomly generated for 20 simulations. Results are in the form of mean \pm standard deviation

Grid	Algo	Cost Saving %	AWD Saving %	Num Chargings Saving %	Approx. Ratio RG	Approx. Ratio G	Speed-up Ratio RG	Speed-up Ratio G
	BruteForce	9.141 ± 4.824	6.126 ± 13.672	17.336 ± 9.627	NA	NA	NA	NA
	clook	9.258 ± 4.411	5.106 ± 11.79	17.182 ± 9.052	1.016 ± 0.049	1.016 ± 0.037	11.385 ± 1.868	10.951 ± 2.031
	concaveTSP	9.543 ± 4.491	5.924 ± 12.768	17.67 ± 9.096	1.001 ± 0.002	1.005 ± 0.016	11.895 ± 2.842	11.169 ± 1.923
	nearest_insertion	9.237 ± 4.474	3.172 ± 12.4	17.285 ± 9.356	1.006 ± 0.016	1.007 ± 0.019	13.732 ± 3.014	12.314 ± 3.009
Tri	farthest_insertion	9.543 ± 4.491	5.788 ± 12.714	17.67 ± 9.096	1.001 ± 0.002	1.005 ± 0.016	12.075 ± 3.237	11.692 ± 3.627
	cheapest_insertion	9.237 ± 4.474	3.42 ± 12.533	17.285 ± 9.356	1.006 ± 0.016	1.007 ± 0.019	13.607 ± 3.244	12.904 ± 2.361
	arbitrary_insertion	9.543 ± 4.491	5.788 ± 12.714	17.67 ± 9.096	1.001 ± 0.002	1.005 ± 0.016	12.148 ± 4.512	13.176 ± 1.574
	nn	7.88 ± 9.473	0.581 ± 19.279	15.729 ± 12.721	1.037 ± 0.057	1.026 ± 0.048	13.935 ± 2.958	13.012 ± 2.356
	repetitive_nn	9.543 ± 4.491	5.788 ± 12.714	17.67 ± 9.096	1.001 ± 0.002	1.005 ± 0.016	12.213 ± 3.011	12.124 ± 1.513
	two_opt	5.999 ± 8.718	4.677 ± 15.799	13.952 ± 11.976	1.052 ± 0.064	1.018 ± 0.034	13.96 ± 3.093	12.98 ± 2.369
	BruteForce	6.64 ± 4.526	-0.405 ± 11.464	15.473 ± 8.785	NA	NA	NA	NA
	clook	6.51 ± 4.464	7.566 ± 9.3	15.152 ± 8.676	1.022 ± 0.056	1.02 ± 0.051	10.867 ± 2.023	11.82 ± 3.386
	concaveTSP	6.378 ± 4.574	-1.617 ± 22.252	14.731 ± 8.471	1.005 ± 0.011	1.002 ± 0.008	11.284 ± 1.517	12.135 ± 3.508
	nearest_insertion	6.07 ± 4.571	0.483 ± 13.622	14.346 ± 8.244	1.01 ± 0.023	1.004 ± 0.012	11.415 ± 3.428	13.692 ± 3.853
Sa	farthest_insertion	6.372 ± 4.572	-0.985 ± 22.393	14.731 ± 8.471	1.005 ± 0.011	1.002 ± 0.008	12.282 ± 2.331	12.712 ± 5.212
Эų	cheapest_insertion	6.219 ± 4.595	2.482 ± 10.21	14.731 ± 8.471	1.009 ± 0.023	1.004 ± 0.012	12.648 ± 1.819	13.43 ± 4.728
	arbitrary_insertion	6.358 ± 4.563	1.56 ± 14.266	14.731 ± 8.471	1.005 ± 0.011	1.002 ± 0.008	12.391 ± 2.316	14.109 ± 4.377
	nn	7.056 ± 6.867	1.005 ± 18.681	14.797 ± 9.229	1.024 ± 0.051	1.03 ± 0.058	12.082 ± 3.036	14.026 ± 4.182
	repetitive_nn	6.372 ± 4.572	-0.985 ± 22.393	14.731 ± 8.471	1.005 ± 0.011	1.002 ± 0.008	11.894 ± 1.724	12.624 ± 4.071
	two_opt	5.319 ± 7.807	-3.218 ± 26.245	13.235 ± 10.656	1.035 ± 0.069	1.021 ± 0.038	11.996 ± 2.964	13.04 ± 5.025

Table: Simulation results for triangular and square grid. Savings are for Red-Gray heuristics over only Gray edge usage. Approximation ratios and Speed-ups are over Brute-Force method. $\bf 5$ boats randomly generated for $\bf 20$ simulations. Results are in the form of mean \pm standard deviation

Grid	Algo	Cost Saving %	AWD Saving %	Num Chargings Saving %	Approx. Ratio RG	Approx. Ratio G	Speed-up Ratio RG	Speed-up Ratio G
	BruteForce	8.868 ± 4.655	1.666 ± 21.291	17.29 ± 6.963	NA	NA	NA	NA
	clook	8.323 ± 4.433	3.41 ± 15.792	16.38 ± 6.543	1.047 ± 0.055	1.041 ± 0.055	54.702 ± 10.672	53.934 ± 10.525
	concaveTSP	8.528 ± 4.594	-1.841 ± 20.413	16.761 ± 6.683	1.026 ± 0.051	1.022 ± 0.045	53.547 ± 14.533	54.361 ± 10.974
	nearest_insertion	8.748 ± 5.491	1.134 ± 18.158	17.304 ± 8.558	1.026 ± 0.043	1.025 ± 0.036	61.307 ± 14.513	61.993 ± 14.073
Tri	farthest_insertion	8.866 ± 5.306	3.989 ± 16.013	17.482 ± 7.09	1.014 ± 0.035	1.015 ± 0.035	65.928 ± 9.297	66 ± 5.592
	cheapest_insertion	8.091 ± 5.301	1.169 ± 15.679	16.756 ± 7.5	1.03 ± 0.044	1.021 ± 0.038	64.686 ± 10.608	58.243 ± 17.337
	arbitrary_insertion	9.193 ± 5.041	4.311 ± 14.599	17.966 ± 7.083	1.017 ± 0.036	1.021 ± 0.039	63.862 ± 10.672	64.673 ± 9.737
	nn	5.798 ± 6.573	-2.258 ± 21.899	13.398 ± 8.536	1.077 ± 0.091	1.042 ± 0.072	66.167 ± 11.465	61.269 ± 15.148
	repetitive_nn	8.482 ± 4.339	-0.964 ± 20.983	16.875 ± 6.748	1.019 ± 0.038	1.015 ± 0.035	54.704 ± 17.652	58.802 ± 5.497
	two_opt	7.574 ± 8.497	2.316 ± 15.387	15.708 ± 8.342	1.056 ± 0.087	1.042 ± 0.051	65.192 ± 7.043	63.589 ± 10.872
	BruteForce	5.934 ± 2.907	-6.853 ± 20.773	15.033 ± 5.709	NA	NA	NA	NA
	clook	5.84 ± 3.163	-10.614 ± 23.46	14.197 ± 6.288	1.037 ± 0.039	1.036 ± 0.041	56.284 ± 5.724	46.617 ± 16.545
	concaveTSP	5.983 ± 2.491	-13.563 ± 24.415	13.953 ± 5.24	1.012 ± 0.031	1.013 ± 0.03	56.867 ± 9.547	50.568 ± 15.28
	nearest_insertion	5.748 ± 2.515	-8.725 ± 23.09	13.898 ± 5.153	1.02 ± 0.029	1.018 ± 0.036	61.962 ± 12.212	63.733 ± 8.442
Sa	farthest_insertion	6.612 ± 3.038	-10.137 ± 24.24	15.208 ± 5.761	1.003 ± 0.008	1.011 ± 0.022	62.768 ± 10.748	61.684 ± 12.187
Эų	cheapest_insertion	6.249 ± 3.019	-9.493 ± 22.342	14.884 ± 5.614	1.011 ± 0.022	1.015 ± 0.034	63.946 ± 10.55	61.21 ± 12.498
	arbitrary_insertion	5.349 ± 3.795	-10.673 ± 23.551	13.985 ± 6.121	1.008 ± 0.019	1.001 ± 0.004	64.039 ± 9.896	63.056 ± 6.296
	nn	6.948 ± 6.303	-4.184 ± 23.056	17.266 ± 8.653	1.042 ± 0.053	1.055 ± 0.046	57.54 ± 17.577	62.768 ± 10.436
	repetitive_nn	6.249 ± 3.062	-11.567 ± 24.903	15.208 ± 5.761	1.01 ± 0.021	1.014 ± 0.025	54.33 ± 14.277	58.342 ± 9.149
	two_opt	7.807 ± 6.095	-5.589 ± 21.513	15.45 ± 9.141	1.04 ± 0.057	1.063 ± 0.058	63.018 ± 10.991	63.305 ± 10.543

Table: Simulation results for triangular and square grid. Savings are for Red-Gray heuristics over only Gray edge usage. Approximation ratios and Speed-ups are over Brute-Force method. **6 boats randomly generated for 20 simulations**. Results are in the form of mean \pm standard deviation

Grid	Algo	Cost Saving %	AWD Saving %	Num Chargings Saving %	Approx. Ratio RG	Approx. Ratio G	Speed-up Ratio RG	Speed-up Ratio G
	BruteForce	10.991 ± 6.183	4.798 ± 13.217	17.802 ± 7.777	NA	NA	NA	NA
	clook	10.93 ± 5.343	8.613 ± 14.575	17.218 ± 5.876	1.064 ± 0.067	1.063 ± 0.074	336.433 ± 95.01	295.898 ± 109.473
	concaveTSP	10.543 ± 6.389	7.797 ± 13.268	17.604 ± 7.871	1.022 ± 0.041	1.017 ± 0.044	357.732 ± 78.98	376.644 ± 29.189
	nearest_insertion	11.776 ± 5.436	10.466 ± 11.957	18.918 ± 6.634	1.036 ± 0.044	1.045 ± 0.051	433.548 ± 22.384	405.666 ± 78.451
Tri	farthest_insertion	10.326 ± 6.226	5.694 ± 14.083	17.497 ± 7.996	1.01 ± 0.02	1.003 ± 0.012	427.932 ± 62.458	398.882 ± 89.541
	cheapest_insertion	10.551 ± 7.536	7.937 ± 15.716	17.734 ± 8.257	1.035 ± 0.039	1.031 ± 0.041	381.638 ± 121.093	400.926 ± 76.278
	arbitrary_insertion	11.969 ± 7.948	9.276 ± 11.237	19.002 ± 9.155	1.015 ± 0.039	1.029 ± 0.047	387.22 ± 112.774	376.091 ± 102.843
	nn	9.108 ± 9.199	7.868 ± 16.067	15.374 ± 9.216	1.1 ± 0.087	1.079 ± 0.074	411.601 ± 81.716	426.876 ± 31.193
	repetitive_nn	10.034 ± 6.079	4.706 ± 13.76	16.918 ± 7.583	1.026 ± 0.041	1.015 ± 0.035	396.865 ± 90.325	393.541 ± 30.383
	two_opt	7.762 ± 8.984	-1.402 ± 22.882	15.188 ± 8.953	1.072 ± 0.07	1.036 ± 0.058	413.163 ± 72.171	362.235 ± 132.171
	BruteForce	8.037 ± 4.109	0.78 ± 11.454	19.775 ± 8.391	NA	NA	NA	NA
	clook	7.499 ± 3.399	3.383 ± 15.292	19.268 ± 7.381	1.084 ± 0.059	1.077 ± 0.05	342.447 ± 92.399	320.1 ± 94.281
	concaveTSP	8 ± 4.041	0.002 ± 14.457	19.747 ± 7.831	1.014 ± 0.025	1.013 ± 0.026	383.352 ± 65.676	356.616 ± 82.259
	nearest_insertion	8.317 ± 5.231	-3.645 ± 20.151	19.222 ± 9.607	1.043 ± 0.052	1.047 ± 0.05	385.321 ± 110.161	407.548 ± 66.634
Sa	farthest_insertion	7.933 ± 3.942	1.142 ± 12.447	19.169 ± 7.964	1.004 ± 0.012	1.003 ± 0.007	397.872 ± 114.178	405.063 ± 71.121
oq	cheapest_insertion	6.832 ± 5.031	-5.778 ± 14.923	17.648 ± 9.011	1.055 ± 0.058	1.041 ± 0.046	383.373 ± 104.393	357.335 ± 136.662
	arbitrary_insertion	7.676 ± 6.205	-3.677 ± 15.141	18.642 ± 8.981	1.03 ± 0.051	1.027 ± 0.042	406.005 ± 101.385	425.686 ± 17.989
	nn	4.171 ± 9.726	-10.233 ± 28.861	14.711 ± 12.631	1.105 ± 0.099	1.062 ± 0.068	404.158 ± 94.317	411.081 ± 72.39
	repetitive_nn	8.181 ± 3.959	2.497 ± 12.103	20.155 ± 8.284	1.015 ± 0.028	1.016 ± 0.031	383.738 ± 86.72	352.204 ± 105.294
	two_opt	5.988 ± 8.201	-0.469 ± 21.566	17.272 ± 9.147	1.072 ± 0.063	1.052 ± 0.072	414.197 ± 70.865	409.881 ± 67.041

Table: Simulation results for triangular and square grids. Savings are for Red-Gray heuristics over only Gray edge usage. Approximation ratios and Speed-ups are over Brute-Force method. **7 boats randomly generated for 20 simulations**. Results are in the form of mean \pm standard deviation.

Grid	Algo	Cost Saving %	AWD Saving %	Num Chargings Saving %	Approx. Ratio RG	Approx. Ratio G	Speed-up Ratio RG	Speed-up Ratio G
	BruteForce	12.182 ± 5.258	8.565 ± 13.825	18.825 ± 7.611	NA	NA	NA	NA
	clook	10.969 ± 5.487	8.333 ± 10.87	16.709 ± 8.228	1.065 ± 0.089	1.049 ± 0.074	2323.506 ± 1090.313	2519.976 ± 894.221
	concaveTSP	12.09 ± 5.201	4.562 ± 17.664	18.627 ± 7.652	1.026 ± 0.046	1.025 ± 0.042	2846.816 ± 910.073	2707.85 ± 923.289
	nearest_insertion	12.903 ± 4.748	9.577 ± 10.715	19.629 ± 6.968	1.035 ± 0.055	1.043 ± 0.049	3072.458 ± 1125.865	3280.95 ± 666.735
Tri	farthest_insertion	11.494 ± 4.859	5.891 ± 15.457	18.655 ± 7.181	1.018 ± 0.039	1.01 ± 0.024	3499.508 ± 338.037	3283.165 ± 674.529
In	cheapest_insertion	11.665 ± 6.103	8.171 ± 13.865	18.531 ± 7.624	1.028 ± 0.039	1.023 ± 0.028	3169.709 ± 920.07	3136 ± 888.583
	arbitrary_insertion	13.199 ± 6.874	6.87 ± 19.079	19.867 ± 8.467	1.016 ± 0.024	1.03 ± 0.045	2850.124 ± 1175.964	3116.143 ± 921.251
	nn	8.691 ± 10.327	4.479 ± 19.718	14.267 ± 11.53	1.092 ± 0.077	1.054 ± 0.059	3252.765 ± 978.095	3280.022 ± 669.766
	repetitive_nn	11.649 ± 5.231	9.235 ± 11.71	17.888 ± 7.777	1.026 ± 0.045	1.019 ± 0.036	2798.433 ± 1200.604	3065.354 ± 617.465
	two_opt	8.94 ± 8.408	5.095 ± 13.874	15.385 ± 7.902	1.104 ± 0.112	1.064 ± 0.065	3428.719 ± 341.631	3125.57 ± 913.372
	BruteForce	7.451 ± 3.61	1.784 ± 11.452	18.634 ± 5.744	NA	NA	NA	NA
	clook	6.704 ± 3.784	6.593 ± 7.946	15.669 ± 6.201	1.062 ± 0.083	1.053 ± 0.077	3423.964 ± 1033.882	3590.896 ± 1381.162
	concaveTSP	7.299 ± 3.705	-1.071 ± 16.145	17.614 ± 6.566	1.015 ± 0.029	1.014 ± 0.028	3555.98 ± 1101.093	3789.317 ± 1458.101
	nearest_insertion	8.283 ± 5.275	-0.304 ± 22.146	18.255 ± 6.84	1.046 ± 0.061	1.056 ± 0.054	3763.436 ± 1462.795	3920.006 ± 1806.181
Sa	farthest_insertion	7.949 ± 3.502	-0.917 ± 17.705	17.77 ± 5.714	1.004 ± 0.008	1.01 ± 0.02	4093.449 ± 923.356	4195.969 ± 1641.237
oq	cheapest_insertion	7.636 ± 6.393	-2.675 ± 23.218	18.024 ± 8.32	1.032 ± 0.042	1.037 ± 0.054	3669.774 ± 1408.791	4606.16 ± 1007.742
	arbitrary_insertion	8.277 ± 4.423	-0.258 ± 18.75	17.649 ± 6.338	1.015 ± 0.024	1.025 ± 0.033	3721.356 ± 1438.948	4400.094 ± 1373.281
	nn	4.616 ± 11.159	-2.709 ± 16.41	14.559 ± 10.18	1.097 ± 0.1	1.068 ± 0.065	3144.783 ± 1851.757	4589.522 ± 1012.535
	repetitive_nn	7.425 ± 3.603	1.651 ± 14.22	16.981 ± 5.902	1.018 ± 0.03	1.018 ± 0.035	3709.634 ± 1144.465	3681.774 ± 1690.398
	two_opt	5.261 ± 7.635	-1.83 ± 18.827	14.874 ± 7.78	1.08 ± 0.073	1.058 ± 0.071	3910.01 ± 1221.312	4606.714 ± 1009.613
	repetitive_nn	$\textbf{7.425} \pm \textbf{3.603}$	1.651 ± 14.22	16.981 ± 5.902	1.018 ± 0.03	1.018 ± 0.035	3709.634 ± 1144.465	3681.774 ± 1

Table: Benchmark results for approximate TSP tour costs in units.

Dataset	concaveTSP	FI	NN	2-Opt
myLattice-25x40-1000	10437.0	10622.7	12225.1	10864.0
myLattice-50x40-2000	20576.3	21256.0	24264.8	21571.5
myLattice-50x60-3000	30601.7	31877.7	36396.3	32275.8
myRNDLattice-29x46-1000	13545.6	11324.5	13122.9	11597.9
myRNDLattice-58x46-2000	28001.3	22720.8	26033.6	23181.4
myRNDLattice-58x69-3000	42777.2	34129.5	38661.3	34664.3
myHexLattice-25x40-1000	10455.2	10494.8	12280.5	10730.5
myHexLattice-50x40-2000	20439.9	20534.8	21364.9	20863.0
myHexLattice-50x60-3000	30667.5	30815.9	31839.5	31193.8
myRNDHexLattice-29x46-1000	12255.9	11092.5	12798.8	11233.1
myRNDHexLattice-58x46-2000	23334.8	21695.8	24520.3	21858.7
myRNDHexLattice-58x69-3000	35494.9	32452.0	36658.8	32582.3

Table: Benchmark results for running time in seconds.

Dataset	concaveTSP	FI	NN	2-Opt
myLattice-25x40-1000	0.279	3.088	0.060	2.063
myLattice-50x40-2000	0.644	20.307	0.176	31.207
myLattice-50x60-3000	0.988	67.366	0.360	153.377
myRNDLattice-29x46-1000	0.241	3.093	0.063	2.213
myRNDLattice-58x46-2000	0.527	20.298	0.169	32.087
myRNDLattice-58x69-3000	0.858	67.522	0.365	164.172
myHexLattice-25x40-1000	0.078	3.072	0.063	2.191
myHexLattice-50x40-2000	0.117	20.378	0.189	36.102
myHexLattice-50x60-3000	0.147	68.024	0.388	160.825
myRNDHexLattice-29x46-1000	0.152	3.072	0.052	2.305
myRNDHexLattice-58x46-2000	0.273	21.087	0.182	36.376
myRNDHexLattice-58x69-3000	0.448	69.281	0.353	185.657

Table: Benchmark results for approximate TSP tour AWD (from vertex 1) costs in units.

Dataset	concaveTSP	FI	NN	2-Opt
myLattice-25x40-1000	5300.1	5320.5	5948.3	5440.4
myLattice-50x40-2000	10395.3	10632.3	12007.0	10810.2
myLattice-50x60-3000	15389.2	15953.1	18339.8	16139.2
myRNDLattice-29x46-1000	6863.2	5668.0	6575.0	5810.1
myRNDLattice-58x46-2000	13972.7	11363.8	13010.3	11615.3
myRNDLattice-58x69-3000	21385.0	17064.1	19581.6	17348.2
myHexLattice-25x40-1000	5229.7	5254.2	6203.6	5380.4
myHexLattice-50x40-2000	10225.1	10274.0	10819.5	10469.0
myHexLattice-50x60-3000	15341.0	15415.2	16102.9	15631.5
myRNDHexLattice-29x46-1000	6257.2	5552.3	6501.7	5622.2
myRNDHexLattice-58x46-2000	11477.9	10856.9	12388.4	10930.5
myRNDHexLattice-58x69-3000	17782.4	16225.2	18310.3	16295.5

Statistics from Italian Gov.(?) *:

"Every year, boating activities require to deal with a high number of rescuing calls. In Italy in 2013, 6166 boats called for help. During the summer period (35 days) about 1152 people called for aid in Marche region. ... false alarms. More precisely, only 2.4% of the calls requires rescuing, thus lifeboat assistance."

Basically for 2013:

 $\frac{(6166 \times \frac{2.4}{100})}{365} = 0.405$ \rightarrow about a call every other day!

Considers only the calls people managed to made. "Survivorship hias" blues! > Remember the ones the

"Survivorship bias" blues! → Remember the ones that couldn't!

^{*}Formica, N., Mostarda, L., Navarra, A. (2021). UAVs Route Planning in Sea Emergencies. In: Barolli, et al. (eds) AINA 2021. LNNS, vol 225. Springer. https://doi.org/10.1007/978-3-030-75100-5_51

Tri CS Grid: Good red-gray points

RQ: How often can you have such red-gray edges in Tri Grid?

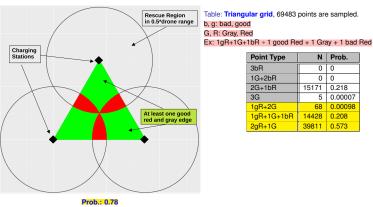


Table: Triangular grid, 69483 points are sampled. b, q: bad, good G, R: Gray, Red

> Point Type Prob. 3bR 1G+2bR 2G+1bR 15171 0.218 3G 0.00007 1aR+2G 0.00098 1gR+1G+1bR 14428 0.208 2gR+1G 39811 0.573

Sq CS Grid: Good red-gray points

RQ: How often can you have such red-gray edges in Sq Grid?

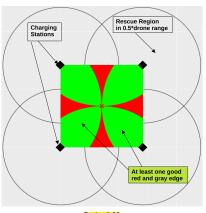
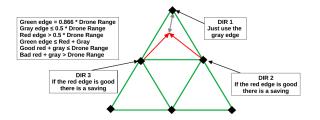


Table: Square grid, 160801 points are sampled.

b, g: bad, good

G, R: Gray, Red Ex: 1G+2gR+1bR → 1 Gray + 2 good Red + 1 bad Red

Point Type	N	Prob.
4bR	0	0
1G+3bR	0	0
2G+2bR	29452	0.183
3G+1bR	64	0.0004
4G	5	0.00003
1G+3gR	736	0.0046
2G+2gR	0	0
1G+2gR+1bR	66752	0.415
3G+1gR	64	0.0004
2G+1gR+1bR	63728	0.396
1G+1gR+2bR	0	0


Prob.: 0.82

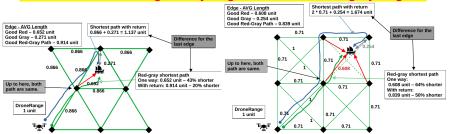
Prob. of using a Good Red-Gray Path

RQ: How often can you benefit from these red-gray edges?

$$P(Benefit_{Tri}) = P(1gR) \times P(gD) + P(2gR) \times P(gD)$$

$$= 0.21 \times 0.333 + 0.57 \times 0.666 = \textbf{0.45}$$

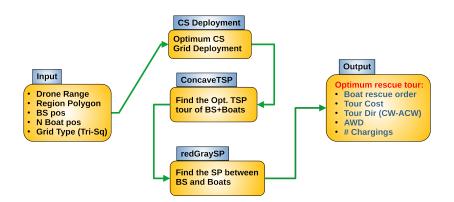
$$P(Benefit_{Sq}) = P(1gR) \times P(gD) + P(2gR) \times P(gD) + P(3gR) \times P(gD)$$


$$= 0.3964 \times 0.25 + 0.415 \times 0.5 + 0.0046 \times 0.75 = \textbf{0.31}$$

Tri Grid wins!

Tri vs Sq CS Grid: Theoretical Savings[†]

RQ: How much savings can you get from these red-gray edges?


Savings from red-gray path heuristic compared to base case (go to the CS nearest to the Boat).

(Know how much profit you can get from your "heuristic"!) Sq Grid wins!

[†]Edge statistics table in Appendix 21

Boat Rescue: Process Flow

List of Publications (only aff. UNICAM) - I

- Kilic K.I., Gemikonakli O., Mostarda L. (2020) Multi-objective Priority Based Heuristic Optimization for Region Coverage with UAVs. AINA, Advances in Intelligent Systems and Computing, 1151:768–779. Springer. DOI: https://doi.org/10.1007/978-3-030-44041-1_68
- Kilic, K. I., Gemikonakli, O. and Mostarda, L. (2021), Voronoi Tesselation-based load-balanced multi-objective priority-based heuristic optimisation for multi-cell region coverage with UAVs, International Journal of Web and Grid Services 17(2), 152-178. DOI: https://doi.org/10.1504/IJWGS.2021.114574

List of Publications (only aff. UNICAM) - II

- Kilic K.I., Mostarda L. (2021) Optimum Path Finding Framework for Drone Assisted Boat Rescue Missions. AINA, Lecture Notes in Networks and Systems, 227:219–231. Springer. DOI: https://doi.org/10.1007/978-3-030-75078-7_23
- Kilic K.I., Mostarda L. (2021) Heuristic Drone Pathfinding over Optimised Charging Station Grid. IEEE Accesss, vol. 9, pp. 164070-164089, DOI: https://doi.org/10.1109/ACCESS.2021.3134459
- Kilic K.I., Mostarda L. (2022) Novel Concave Hull-Based Heuristic Algorithm For TSP, Operations Research Forum, Springer Nature, 3(2):25, DOI: https://doi.org/10.1007/s43069-022-00137-9

References I

- AL-HOURANI, A., KANDEEPAN, S., AND LARDNER, S. Optimal LAP Altitude for Maximum Coverage.
 IEEE Wireless Communications Letters 3, 6 (2014), 569–572.
 http://dx.doi.org/10.1109/LWC.2014.2342736.
- [2] AL-TURJMAN, F., LEMAYIAN, J. P., ALTURJMAN, S., AND MOSTARDA, L. Enhanced Deployment Strategy for the 5G Drone-BS Using Artificial Intelligence. *IEEE Access* 7 (2019), 75999–76008. http://dx.doi.org/10.1109/ACCESS.2019.2921729.
- [3] ARDIA, D., MULLEN, K., PETERSON, B., ULRICH, J., AND BOUDT, K. DEoptim: Global Optimization by Differential Evolution, 2016. https://cran.r-project.org/web/packages/DEoptim/index.html, online; accessed 12-September-2019.
- [4] CHETLUR RAVI, V. V., AND DHILLON, H. S. Downlink coverage probability in a finite network of UAV base stations. In 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (July 2016), pp. 1–5. http://dx.doi.org/10.1109/SPAWC.2016.7536859.

References II

- [5] CHOI, C. H., JANG, H. J., LIM, S. G., LIM, H. C., CHO, S. H., AND GAPONOV, I. Automatic wireless drone charging station creating essential environment for continuous drone operation. In 2016 International Conference on Control. Automation and Information Sciences (ICCAIS) (2016), pp. 132-136.
 - https://doi.org/110.1109/ICCAIS.2016.7822448.
- [6] COLLINS, C. R., AND STEPHENSON, K. A circle packing algorithm. Computational Geometry 25, 3 (2003), 233-256. https://doi.org/10.1016/S0925-7721(02)00099-8.
- [7] DEINEKO, V. G., VAN DAL, R., AND ROTE, G. The convex-hull-and-line traveling salesman problem: a solvable case. Information Processing Letters 51, 3 (1994), 141–148. https://doi.org/10.1016/0020-0190(94)00071-9.
- DEĬNEKO, V. G., AND WOEGINGER, G. J. [8] The Convex-hull-and-k-line Travelling Salesman Problem. Information Processing Letters 59, 6 (1996), 295–301.

References III

- [9] GALKIN, B., KIBILDA, J., AND DASILVA, L. A. UAVs as Mobile Infrastructure: Addressing Battery Lifetime. IEEE Communications Magazine 57, 6 (2019), 132–137. https://doi.org/10.1109/MCOM.2019.1800545.
- [10] HELSGAUN, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of Operational Research 126, 1 (2000), 106–130. https://doi.org/10.1016/S0377-2217 (99)00284-2
- [11] HUANG, H., AND SAVKIN, A. V. A Method of Optimized Deployment of Charging Stations for Drone Delivery. IEEE Transactions on Transportation Electrification 6, 2 (2020), 510–518. https://doi.org/10.1109/TTE.2020.2988149.
- [12] HUANG, H., AND SAVKIN, A. V. Optimal Deployment of Charging Stations for Aerial Surveillance by UAVs with the Assistance of Public Transportation Vehicles. Sensors 21, 16 (2021), 5320. https://doi.org/10.3390/s21165320.
- [13] JONES, J., AND ADAMATZKY, A. Computation of the travelling salesman problem by a shrinking blob. Natural Computing 13, 1 (2014), 1–16. https://doi.org/10.1007/s11047-013-9401-x.

References IV

- [14] LI, X., GUO, D., YIN, H., AND WEI, G. Drone-assisted public safety wireless broadband network. In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (March 2015), pp. 323–328. http://dx.doi.org/10.1109/WCNCW.2015.7122575.
- [15] LIANSHUAN, S., AND ZENGYAN, L. An Improved Pareto Genetic Algorithm for Multi-objective TSP. In 2009 Fifth International Conference on Natural Computation (2009), vol. 4, pp. 585–588. https://doi.org/10.1109/ICNC.2009.510.
- [16] LUST, T., AND TEGHEM, J. The Multiobjective Traveling Salesman Problem: A Survey and a New Approach. In Advances in Multi-Objective Nature Inspired Computing, Coello Coello, Carlos A. and Dhaenens, Clarisse and Jourdan, Laetitia, Ed. Springer Berlin Heidelberg, 2010, pp. 119–141. https://doi.org/10.1007/978-3-642-11218-8 6.
- [17] MAINI, P., AND SUJIT, P. B.
 On cooperation between a fuel constrained UAV and a refueling UGV for large scale mapping applications.
 In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 1370–1377.
 https://doi.org/10.1109/ICUAS.2015.7152432.

References V

[18] MANTHEY, B., AND SHANKAR RAM, L. Approximation Algorithms for Multi-Criteria Traveling Salesman Problems. Algorithmica 53, 1 (2009), 69–88. https://doi.org/10.1007/s00453-007-9011-z.

- [19] MICHINI, B., TOKSOZ, T., REDDING, J., MICHINI, M., HOW, J., VAVRINA, M., AND VIAN, J. Automated Battery Swap and Recharge to Enable Persistent UAV Missions. In *Infotech@Aerospace 2011* (2011). http://dx.doi.org/10.2514/6.2011-1405.
- [20] MULLEN, K. Continuous Global Optimization in R. Journal of Statistical Software, Articles 60, 6 (2014), 1–45. http://dx.doi.org/10.18637/jss.v060.i06.
- [21] OUYANG, J., CHE, Y., XU, J., AND WU, K. Throughput Maximization for Laser-Powered UAV Wireless Communication Systems. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops) (2018), pp. 1–6. https://doi.org/10.1109/ICCW.2018.8403572.
- [22] REINELT, G. TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on Computing 3, 4 (1991), 376–384. https://doi.org/10.1287/ijoc.3.4.376.

References VI

- [23] SCRUCCA, L.
 - GA: Genetic Algorithms, 2019.

https://cran.r-project.org/web/packages/GA/index.html, online; accessed 12-September-2019.

- [24] SUNDAR, K., AND RATHINAM, S. Algorithms for Routing an Unmanned Aerial Vehicle in the Presence of Refueling Depots. IEEE Transactions on Automation Science and Engineering 11, 1 (2014), 287–294. https://doi.org/10.1109/TASE.2013.2279544.
- [25] XIANG, Y., GUBIAN, S., SUOMELA, B., AND HOENG, J. GenSA: Generalized Simulated Annealing, 2019. https://cran.r-project.org/web/packages/GenSA/index.html, online; accessed 12-September-2019.
- [26] YIN, S., ZHAO, Y., AND LI, L. Resource Allocation and Basestation Placement in Cellular Networks With Wireless Powered UAVs.
 IEEE Transactions on Vehicular Technology 68, 1 (2019), 1050–1055.
 https://doi.org/10.1109/TUT.2019.2883093
- [27] ZORBAS, D., PUGLIESE, L. D. P., RAZAFINDRALAMBO, T., AND GUERRIERO, F. Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications 75 (2016), 16–31. https://doi.org/10.1016/j.jnca.2016.08.009.